Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=-4
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 4.
x-y=-4,x+4y=-9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y-4
Me tāpiri y ki ngā taha e rua o te whārite.
y-4+4y=-9
Whakakapia te y-4 mō te x ki tērā atu whārite, x+4y=-9.
5y-4=-9
Tāpiri y ki te 4y.
5y=-5
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 5.
x=-1-4
Whakaurua te -1 mō y ki x=y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5
Tāpiri -4 ki te -1.
x=-5,y=-1
Kua oti te pūnaha te whakatau.
x-y=-4
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 4.
x-y=-4,x+4y=-9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-1\right)}&-\frac{-1}{4-\left(-1\right)}\\-\frac{1}{4-\left(-1\right)}&\frac{1}{4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\\-\frac{1}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=-1
Tangohia ngā huānga poukapa x me y.
x-y=-4
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 4.
x-y=-4,x+4y=-9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-y-4y=-4+9
Me tango x+4y=-9 mai i x-y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-4y=-4+9
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-4+9
Tāpiri -y ki te -4y.
-5y=5
Tāpiri -4 ki te 9.
y=-1
Whakawehea ngā taha e rua ki te -5.
x+4\left(-1\right)=-9
Whakaurua te -1 mō y ki x+4y=-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-4=-9
Whakareatia 4 ki te -1.
x=-5
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=-5,y=-1
Kua oti te pūnaha te whakatau.