Whakaoti mō x, y
x=-4
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{4}x+\frac{1}{3}y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{4}x=-\frac{1}{3}y
Me tango \frac{y}{3} mai i ngā taha e rua o te whārite.
x=4\left(-\frac{1}{3}\right)y
Me whakarea ngā taha e rua ki te 4.
x=-\frac{4}{3}y
Whakareatia 4 ki te -\frac{y}{3}.
\frac{1}{2}\left(-\frac{4}{3}\right)y+\frac{1}{6}y=-\frac{3}{2}
Whakakapia te -\frac{4y}{3} mō te x ki tērā atu whārite, \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}.
-\frac{2}{3}y+\frac{1}{6}y=-\frac{3}{2}
Whakareatia \frac{1}{2} ki te -\frac{4y}{3}.
-\frac{1}{2}y=-\frac{3}{2}
Tāpiri -\frac{2y}{3} ki te \frac{y}{6}.
y=3
Me whakarea ngā taha e rua ki te -2.
x=-\frac{4}{3}\times 3
Whakaurua te 3 mō y ki x=-\frac{4}{3}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4
Whakareatia -\frac{4}{3} ki te 3.
x=-4,y=3
Kua oti te pūnaha te whakatau.
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{8}{3}\\4&-2\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\left(-\frac{3}{2}\right)\\-2\left(-\frac{3}{2}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=3
Tangohia ngā huānga poukapa x me y.
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}\times \frac{1}{4}x+\frac{1}{2}\times \frac{1}{3}y=0,\frac{1}{4}\times \frac{1}{2}x+\frac{1}{4}\times \frac{1}{6}y=\frac{1}{4}\left(-\frac{3}{2}\right)
Kia ōrite ai a \frac{x}{4} me \frac{x}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{4}.
\frac{1}{8}x+\frac{1}{6}y=0,\frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8}
Whakarūnātia.
\frac{1}{8}x-\frac{1}{8}x+\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
Me tango \frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8} mai i \frac{1}{8}x+\frac{1}{6}y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
Tāpiri \frac{x}{8} ki te -\frac{x}{8}. Ka whakakore atu ngā kupu \frac{x}{8} me -\frac{x}{8}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{8}y=\frac{3}{8}
Tāpiri \frac{y}{6} ki te -\frac{y}{24}.
y=3
Me whakarea ngā taha e rua ki te 8.
\frac{1}{2}x+\frac{1}{6}\times 3=-\frac{3}{2}
Whakaurua te 3 mō y ki \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{2}x+\frac{1}{2}=-\frac{3}{2}
Whakareatia \frac{1}{6} ki te 3.
\frac{1}{2}x=-2
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
x=-4
Me whakarea ngā taha e rua ki te 2.
x=-4,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}