Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-36y=756
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 36.
20x-y=320
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 20.
x-36y=756,20x-y=320
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-36y=756
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=36y+756
Me tāpiri 36y ki ngā taha e rua o te whārite.
20\left(36y+756\right)-y=320
Whakakapia te 756+36y mō te x ki tērā atu whārite, 20x-y=320.
720y+15120-y=320
Whakareatia 20 ki te 756+36y.
719y+15120=320
Tāpiri 720y ki te -y.
719y=-14800
Me tango 15120 mai i ngā taha e rua o te whārite.
y=-\frac{14800}{719}
Whakawehea ngā taha e rua ki te 719.
x=36\left(-\frac{14800}{719}\right)+756
Whakaurua te -\frac{14800}{719} mō y ki x=36y+756. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{532800}{719}+756
Whakareatia 36 ki te -\frac{14800}{719}.
x=\frac{10764}{719}
Tāpiri 756 ki te -\frac{532800}{719}.
x=\frac{10764}{719},y=-\frac{14800}{719}
Kua oti te pūnaha te whakatau.
x-36y=756
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 36.
20x-y=320
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 20.
x-36y=756,20x-y=320
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}756\\320\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}756\\320\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-36\\20&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}756\\320\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-36\\20&-1\end{matrix}\right))\left(\begin{matrix}756\\320\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-36\times 20\right)}&-\frac{-36}{-1-\left(-36\times 20\right)}\\-\frac{20}{-1-\left(-36\times 20\right)}&\frac{1}{-1-\left(-36\times 20\right)}\end{matrix}\right)\left(\begin{matrix}756\\320\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{719}&\frac{36}{719}\\-\frac{20}{719}&\frac{1}{719}\end{matrix}\right)\left(\begin{matrix}756\\320\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{719}\times 756+\frac{36}{719}\times 320\\-\frac{20}{719}\times 756+\frac{1}{719}\times 320\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10764}{719}\\-\frac{14800}{719}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{10764}{719},y=-\frac{14800}{719}
Tangohia ngā huānga poukapa x me y.
x-36y=756
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 36.
20x-y=320
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 20.
x-36y=756,20x-y=320
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
20x+20\left(-36\right)y=20\times 756,20x-y=320
Kia ōrite ai a x me 20x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 20 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
20x-720y=15120,20x-y=320
Whakarūnātia.
20x-20x-720y+y=15120-320
Me tango 20x-y=320 mai i 20x-720y=15120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-720y+y=15120-320
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-719y=15120-320
Tāpiri -720y ki te y.
-719y=14800
Tāpiri 15120 ki te -320.
y=-\frac{14800}{719}
Whakawehea ngā taha e rua ki te -719.
20x-\left(-\frac{14800}{719}\right)=320
Whakaurua te -\frac{14800}{719} mō y ki 20x-y=320. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
20x=\frac{215280}{719}
Me tango \frac{14800}{719} mai i ngā taha e rua o te whārite.
x=\frac{10764}{719}
Whakawehea ngā taha e rua ki te 20.
x=\frac{10764}{719},y=-\frac{14800}{719}
Kua oti te pūnaha te whakatau.