Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-33y=858
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 33.
88x-y=5808
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 88.
x-33y=858,88x-y=5808
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-33y=858
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=33y+858
Me tāpiri 33y ki ngā taha e rua o te whārite.
88\left(33y+858\right)-y=5808
Whakakapia te 858+33y mō te x ki tērā atu whārite, 88x-y=5808.
2904y+75504-y=5808
Whakareatia 88 ki te 858+33y.
2903y+75504=5808
Tāpiri 2904y ki te -y.
2903y=-69696
Me tango 75504 mai i ngā taha e rua o te whārite.
y=-\frac{69696}{2903}
Whakawehea ngā taha e rua ki te 2903.
x=33\left(-\frac{69696}{2903}\right)+858
Whakaurua te -\frac{69696}{2903} mō y ki x=33y+858. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{2299968}{2903}+858
Whakareatia 33 ki te -\frac{69696}{2903}.
x=\frac{190806}{2903}
Tāpiri 858 ki te -\frac{2299968}{2903}.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
Kua oti te pūnaha te whakatau.
x-33y=858
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 33.
88x-y=5808
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 88.
x-33y=858,88x-y=5808
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}858\\5808\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-33\\88&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-33\times 88\right)}&-\frac{-33}{-1-\left(-33\times 88\right)}\\-\frac{88}{-1-\left(-33\times 88\right)}&\frac{1}{-1-\left(-33\times 88\right)}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}&\frac{33}{2903}\\-\frac{88}{2903}&\frac{1}{2903}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}\times 858+\frac{33}{2903}\times 5808\\-\frac{88}{2903}\times 858+\frac{1}{2903}\times 5808\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{190806}{2903}\\-\frac{69696}{2903}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
Tangohia ngā huānga poukapa x me y.
x-33y=858
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 33.
88x-y=5808
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 88.
x-33y=858,88x-y=5808
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
88x+88\left(-33\right)y=88\times 858,88x-y=5808
Kia ōrite ai a x me 88x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 88 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
88x-2904y=75504,88x-y=5808
Whakarūnātia.
88x-88x-2904y+y=75504-5808
Me tango 88x-y=5808 mai i 88x-2904y=75504 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2904y+y=75504-5808
Tāpiri 88x ki te -88x. Ka whakakore atu ngā kupu 88x me -88x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2903y=75504-5808
Tāpiri -2904y ki te y.
-2903y=69696
Tāpiri 75504 ki te -5808.
y=-\frac{69696}{2903}
Whakawehea ngā taha e rua ki te -2903.
88x-\left(-\frac{69696}{2903}\right)=5808
Whakaurua te -\frac{69696}{2903} mō y ki 88x-y=5808. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
88x=\frac{16790928}{2903}
Me tango \frac{69696}{2903} mai i ngā taha e rua o te whārite.
x=\frac{190806}{2903}
Whakawehea ngā taha e rua ki te 88.
x=\frac{190806}{2903},y=-\frac{69696}{2903}
Kua oti te pūnaha te whakatau.