Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-3y=48
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
3x+5y=15
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
2x-3y=48,3x+5y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=48
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+48
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+48\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+24
Whakareatia \frac{1}{2} ki te 48+3y.
3\left(\frac{3}{2}y+24\right)+5y=15
Whakakapia te \frac{3y}{2}+24 mō te x ki tērā atu whārite, 3x+5y=15.
\frac{9}{2}y+72+5y=15
Whakareatia 3 ki te \frac{3y}{2}+24.
\frac{19}{2}y+72=15
Tāpiri \frac{9y}{2} ki te 5y.
\frac{19}{2}y=-57
Me tango 72 mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\left(-6\right)+24
Whakaurua te -6 mō y ki x=\frac{3}{2}y+24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-9+24
Whakareatia \frac{3}{2} ki te -6.
x=15
Tāpiri 24 ki te -9.
x=15,y=-6
Kua oti te pūnaha te whakatau.
2x-3y=48
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
3x+5y=15
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
2x-3y=48,3x+5y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 3\right)}&-\frac{-3}{2\times 5-\left(-3\times 3\right)}\\-\frac{3}{2\times 5-\left(-3\times 3\right)}&\frac{2}{2\times 5-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 48+\frac{3}{19}\times 15\\-\frac{3}{19}\times 48+\frac{2}{19}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=15,y=-6
Tangohia ngā huānga poukapa x me y.
2x-3y=48
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
3x+5y=15
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
2x-3y=48,3x+5y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-3\right)y=3\times 48,2\times 3x+2\times 5y=2\times 15
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-9y=144,6x+10y=30
Whakarūnātia.
6x-6x-9y-10y=144-30
Me tango 6x+10y=30 mai i 6x-9y=144 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-10y=144-30
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=144-30
Tāpiri -9y ki te -10y.
-19y=114
Tāpiri 144 ki te -30.
y=-6
Whakawehea ngā taha e rua ki te -19.
3x+5\left(-6\right)=15
Whakaurua te -6 mō y ki 3x+5y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-30=15
Whakareatia 5 ki te -6.
3x=45
Me tāpiri 30 ki ngā taha e rua o te whārite.
x=15
Whakawehea ngā taha e rua ki te 3.
x=15,y=-6
Kua oti te pūnaha te whakatau.