Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+3y=105
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 3,5.
5x-6\times 2y=-120
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5.
5x-12y=-120
Whakareatia te -6 ki te 2, ka -12.
5x+3y=105,5x-12y=-120
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+3y=105
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-3y+105
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-3y+105\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{5}y+21
Whakareatia \frac{1}{5} ki te -3y+105.
5\left(-\frac{3}{5}y+21\right)-12y=-120
Whakakapia te -\frac{3y}{5}+21 mō te x ki tērā atu whārite, 5x-12y=-120.
-3y+105-12y=-120
Whakareatia 5 ki te -\frac{3y}{5}+21.
-15y+105=-120
Tāpiri -3y ki te -12y.
-15y=-225
Me tango 105 mai i ngā taha e rua o te whārite.
y=15
Whakawehea ngā taha e rua ki te -15.
x=-\frac{3}{5}\times 15+21
Whakaurua te 15 mō y ki x=-\frac{3}{5}y+21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-9+21
Whakareatia -\frac{3}{5} ki te 15.
x=12
Tāpiri 21 ki te -9.
x=12,y=15
Kua oti te pūnaha te whakatau.
5x+3y=105
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 3,5.
5x-6\times 2y=-120
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5.
5x-12y=-120
Whakareatia te -6 ki te 2, ka -12.
5x+3y=105,5x-12y=-120
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&3\\5&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}105\\-120\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}5&3\\5&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&3\\5&-12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{5\left(-12\right)-3\times 5}&-\frac{3}{5\left(-12\right)-3\times 5}\\-\frac{5}{5\left(-12\right)-3\times 5}&\frac{5}{5\left(-12\right)-3\times 5}\end{matrix}\right)\left(\begin{matrix}105\\-120\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{1}{25}\\\frac{1}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}105\\-120\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 105+\frac{1}{25}\left(-120\right)\\\frac{1}{15}\times 105-\frac{1}{15}\left(-120\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\15\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=15
Tangohia ngā huānga poukapa x me y.
5x+3y=105
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 3,5.
5x-6\times 2y=-120
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5.
5x-12y=-120
Whakareatia te -6 ki te 2, ka -12.
5x+3y=105,5x-12y=-120
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-5x+3y+12y=105+120
Me tango 5x-12y=-120 mai i 5x+3y=105 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+12y=105+120
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15y=105+120
Tāpiri 3y ki te 12y.
15y=225
Tāpiri 105 ki te 120.
y=15
Whakawehea ngā taha e rua ki te 15.
5x-12\times 15=-120
Whakaurua te 15 mō y ki 5x-12y=-120. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-180=-120
Whakareatia -12 ki te 15.
5x=60
Me tāpiri 180 ki ngā taha e rua o te whārite.
x=12
Whakawehea ngā taha e rua ki te 5.
x=12,y=15
Kua oti te pūnaha te whakatau.