Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}x+\frac{1}{2}y=8,\frac{1}{5}x+\frac{1}{6}y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{3}x+\frac{1}{2}y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{3}x=-\frac{1}{2}y+8
Me tango \frac{y}{2} mai i ngā taha e rua o te whārite.
x=3\left(-\frac{1}{2}y+8\right)
Me whakarea ngā taha e rua ki te 3.
x=-\frac{3}{2}y+24
Whakareatia 3 ki te -\frac{y}{2}+8.
\frac{1}{5}\left(-\frac{3}{2}y+24\right)+\frac{1}{6}y=4
Whakakapia te -\frac{3y}{2}+24 mō te x ki tērā atu whārite, \frac{1}{5}x+\frac{1}{6}y=4.
-\frac{3}{10}y+\frac{24}{5}+\frac{1}{6}y=4
Whakareatia \frac{1}{5} ki te -\frac{3y}{2}+24.
-\frac{2}{15}y+\frac{24}{5}=4
Tāpiri -\frac{3y}{10} ki te \frac{y}{6}.
-\frac{2}{15}y=-\frac{4}{5}
Me tango \frac{24}{5} mai i ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{15}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 6+24
Whakaurua te 6 mō y ki x=-\frac{3}{2}y+24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-9+24
Whakareatia -\frac{3}{2} ki te 6.
x=15
Tāpiri 24 ki te -9.
x=15,y=6
Kua oti te pūnaha te whakatau.
\frac{1}{3}x+\frac{1}{2}y=8,\frac{1}{5}x+\frac{1}{6}y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}&-\frac{\frac{1}{2}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}\\-\frac{\frac{1}{5}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}&\frac{\frac{1}{3}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4}&\frac{45}{4}\\\frac{9}{2}&-\frac{15}{2}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4}\times 8+\frac{45}{4}\times 4\\\frac{9}{2}\times 8-\frac{15}{2}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=15,y=6
Tangohia ngā huānga poukapa x me y.
\frac{1}{3}x+\frac{1}{2}y=8,\frac{1}{5}x+\frac{1}{6}y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{5}\times \frac{1}{3}x+\frac{1}{5}\times \frac{1}{2}y=\frac{1}{5}\times 8,\frac{1}{3}\times \frac{1}{5}x+\frac{1}{3}\times \frac{1}{6}y=\frac{1}{3}\times 4
Kia ōrite ai a \frac{x}{3} me \frac{x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{3}.
\frac{1}{15}x+\frac{1}{10}y=\frac{8}{5},\frac{1}{15}x+\frac{1}{18}y=\frac{4}{3}
Whakarūnātia.
\frac{1}{15}x-\frac{1}{15}x+\frac{1}{10}y-\frac{1}{18}y=\frac{8}{5}-\frac{4}{3}
Me tango \frac{1}{15}x+\frac{1}{18}y=\frac{4}{3} mai i \frac{1}{15}x+\frac{1}{10}y=\frac{8}{5} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{10}y-\frac{1}{18}y=\frac{8}{5}-\frac{4}{3}
Tāpiri \frac{x}{15} ki te -\frac{x}{15}. Ka whakakore atu ngā kupu \frac{x}{15} me -\frac{x}{15}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{2}{45}y=\frac{8}{5}-\frac{4}{3}
Tāpiri \frac{y}{10} ki te -\frac{y}{18}.
\frac{2}{45}y=\frac{4}{15}
Tāpiri \frac{8}{5} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=6
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{45}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{5}x+\frac{1}{6}\times 6=4
Whakaurua te 6 mō y ki \frac{1}{5}x+\frac{1}{6}y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{5}x+1=4
Whakareatia \frac{1}{6} ki te 6.
\frac{1}{5}x=3
Me tango 1 mai i ngā taha e rua o te whārite.
x=15
Me whakarea ngā taha e rua ki te 5.
x=15,y=6
Kua oti te pūnaha te whakatau.