Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+6y+3z=24 3x+4y-6z=2 6x-3y+4z=46
Me whakarea ia whārite mā te taurea pātahi iti rawa o ngā tauraro kei roto. Whakarūnātia.
x=6-\frac{3}{2}y-\frac{3}{4}z
Me whakaoti te 4x+6y+3z=24 mō x.
3\left(6-\frac{3}{2}y-\frac{3}{4}z\right)+4y-6z=2 6\left(6-\frac{3}{2}y-\frac{3}{4}z\right)-3y+4z=46
Whakakapia te 6-\frac{3}{2}y-\frac{3}{4}z mō te x i te whārite tuarua me te tuatoru.
y=32-\frac{33}{2}z z=-20-24y
Me whakaoti ēnei whārite mō y me z takitahi.
z=-20-24\left(32-\frac{33}{2}z\right)
Whakakapia te 32-\frac{33}{2}z mō te y i te whārite z=-20-24y.
z=\frac{788}{395}
Me whakaoti te z=-20-24\left(32-\frac{33}{2}z\right) mō z.
y=32-\frac{33}{2}\times \frac{788}{395}
Whakakapia te \frac{788}{395} mō te z i te whārite y=32-\frac{33}{2}z.
y=-\frac{362}{395}
Tātaitia te y i te y=32-\frac{33}{2}\times \frac{788}{395}.
x=6-\frac{3}{2}\left(-\frac{362}{395}\right)-\frac{3}{4}\times \frac{788}{395}
Whakakapia te -\frac{362}{395} mō te y me te \frac{788}{395} mō z i te whārite x=6-\frac{3}{2}y-\frac{3}{4}z.
x=\frac{2322}{395}
Tātaitia te x i te x=6-\frac{3}{2}\left(-\frac{362}{395}\right)-\frac{3}{4}\times \frac{788}{395}.
x=\frac{2322}{395} y=-\frac{362}{395} z=\frac{788}{395}
Kua oti te pūnaha te whakatau.