Whakaoti mō x, y
x=0
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{3}y=10,x+y=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{2}x+\frac{1}{3}y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{2}x=-\frac{1}{3}y+10
Me tango \frac{y}{3} mai i ngā taha e rua o te whārite.
x=2\left(-\frac{1}{3}y+10\right)
Me whakarea ngā taha e rua ki te 2.
x=-\frac{2}{3}y+20
Whakareatia 2 ki te -\frac{y}{3}+10.
-\frac{2}{3}y+20+y=30
Whakakapia te -\frac{2y}{3}+20 mō te x ki tērā atu whārite, x+y=30.
\frac{1}{3}y+20=30
Tāpiri -\frac{2y}{3} ki te y.
\frac{1}{3}y=10
Me tango 20 mai i ngā taha e rua o te whārite.
y=30
Me whakarea ngā taha e rua ki te 3.
x=-\frac{2}{3}\times 30+20
Whakaurua te 30 mō y ki x=-\frac{2}{3}y+20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-20+20
Whakareatia -\frac{2}{3} ki te 30.
x=0
Tāpiri 20 ki te -20.
x=0,y=30
Kua oti te pūnaha te whakatau.
\frac{1}{2}x+\frac{1}{3}y=10,x+y=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{2}-\frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}\\-\frac{1}{\frac{1}{2}-\frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}10\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6&-2\\-6&3\end{matrix}\right)\left(\begin{matrix}10\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\times 10-2\times 30\\-6\times 10+3\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=30
Tangohia ngā huānga poukapa x me y.
\frac{1}{2}x+\frac{1}{3}y=10,x+y=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}x+\frac{1}{3}y=10,\frac{1}{2}x+\frac{1}{2}y=\frac{1}{2}\times 30
Kia ōrite ai a \frac{x}{2} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{2}.
\frac{1}{2}x+\frac{1}{3}y=10,\frac{1}{2}x+\frac{1}{2}y=15
Whakarūnātia.
\frac{1}{2}x-\frac{1}{2}x+\frac{1}{3}y-\frac{1}{2}y=10-15
Me tango \frac{1}{2}x+\frac{1}{2}y=15 mai i \frac{1}{2}x+\frac{1}{3}y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{3}y-\frac{1}{2}y=10-15
Tāpiri \frac{x}{2} ki te -\frac{x}{2}. Ka whakakore atu ngā kupu \frac{x}{2} me -\frac{x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{1}{6}y=10-15
Tāpiri \frac{y}{3} ki te -\frac{y}{2}.
-\frac{1}{6}y=-5
Tāpiri 10 ki te -15.
y=30
Me whakarea ngā taha e rua ki te -6.
x+30=30
Whakaurua te 30 mō y ki x+y=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Me tango 30 mai i ngā taha e rua o te whārite.
x=0,y=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}