Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{2}x+\frac{1}{3}y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{2}x=-\frac{1}{3}y+1
Me tango \frac{y}{3} mai i ngā taha e rua o te whārite.
x=2\left(-\frac{1}{3}y+1\right)
Me whakarea ngā taha e rua ki te 2.
x=-\frac{2}{3}y+2
Whakareatia 2 ki te -\frac{y}{3}+1.
-\frac{2}{3}y+2+y=1
Whakakapia te -\frac{2y}{3}+2 mō te x ki tērā atu whārite, x+y=1.
\frac{1}{3}y+2=1
Tāpiri -\frac{2y}{3} ki te y.
\frac{1}{3}y=-1
Me tango 2 mai i ngā taha e rua o te whārite.
y=-3
Me whakarea ngā taha e rua ki te 3.
x=-\frac{2}{3}\left(-3\right)+2
Whakaurua te -3 mō y ki x=-\frac{2}{3}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2+2
Whakareatia -\frac{2}{3} ki te -3.
x=4
Tāpiri 2 ki te 2.
x=4,y=-3
Kua oti te pūnaha te whakatau.
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{2}-\frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}\\-\frac{1}{\frac{1}{2}-\frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6&-2\\-6&3\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6-2\\-6+3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-3
Tangohia ngā huānga poukapa x me y.
\frac{1}{2}x+\frac{1}{3}y=1,x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}x+\frac{1}{3}y=1,\frac{1}{2}x+\frac{1}{2}y=\frac{1}{2}
Kia ōrite ai a \frac{x}{2} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}x+\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
Me tango \frac{1}{2}x+\frac{1}{2}y=\frac{1}{2} mai i \frac{1}{2}x+\frac{1}{3}y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{3}y-\frac{1}{2}y=1-\frac{1}{2}
Tāpiri \frac{x}{2} ki te -\frac{x}{2}. Ka whakakore atu ngā kupu \frac{x}{2} me -\frac{x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{1}{6}y=1-\frac{1}{2}
Tāpiri \frac{y}{3} ki te -\frac{y}{2}.
-\frac{1}{6}y=\frac{1}{2}
Tāpiri 1 ki te -\frac{1}{2}.
y=-3
Me whakarea ngā taha e rua ki te -6.
x-3=1
Whakaurua te -3 mō y ki x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=4,y=-3
Kua oti te pūnaha te whakatau.