Whakaoti mō x, y
x=\frac{63}{29}\approx 2.172413793\text{, }y=-\frac{40}{29}\approx -1.379310345
x=-\frac{9}{5}=-1.8\text{, }y=\frac{8}{5}=1.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+9y^{2}=36
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 9,4.
3x+4y=1,9y^{2}+4x^{2}=36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=1
Whakaotia te 3x+4y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y+1
Me tango 4y mai i ngā taha e rua o te whārite.
x=-\frac{4}{3}y+\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
9y^{2}+4\left(-\frac{4}{3}y+\frac{1}{3}\right)^{2}=36
Whakakapia te -\frac{4}{3}y+\frac{1}{3} mō te x ki tērā atu whārite, 9y^{2}+4x^{2}=36.
9y^{2}+4\left(\frac{16}{9}y^{2}-\frac{8}{9}y+\frac{1}{9}\right)=36
Pūrua -\frac{4}{3}y+\frac{1}{3}.
9y^{2}+\frac{64}{9}y^{2}-\frac{32}{9}y+\frac{4}{9}=36
Whakareatia 4 ki te \frac{16}{9}y^{2}-\frac{8}{9}y+\frac{1}{9}.
\frac{145}{9}y^{2}-\frac{32}{9}y+\frac{4}{9}=36
Tāpiri 9y^{2} ki te \frac{64}{9}y^{2}.
\frac{145}{9}y^{2}-\frac{32}{9}y-\frac{320}{9}=0
Me tango 36 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\left(-\frac{32}{9}\right)^{2}-4\times \frac{145}{9}\left(-\frac{320}{9}\right)}}{2\times \frac{145}{9}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9+4\left(-\frac{4}{3}\right)^{2} mō a, 4\times \frac{1}{3}\left(-\frac{4}{3}\right)\times 2 mō b, me -\frac{320}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\frac{1024}{81}-4\times \frac{145}{9}\left(-\frac{320}{9}\right)}}{2\times \frac{145}{9}}
Pūrua 4\times \frac{1}{3}\left(-\frac{4}{3}\right)\times 2.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\frac{1024}{81}-\frac{580}{9}\left(-\frac{320}{9}\right)}}{2\times \frac{145}{9}}
Whakareatia -4 ki te 9+4\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{\frac{1024+185600}{81}}}{2\times \frac{145}{9}}
Whakareatia -\frac{580}{9} ki te -\frac{320}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\left(-\frac{32}{9}\right)±\sqrt{2304}}{2\times \frac{145}{9}}
Tāpiri \frac{1024}{81} ki te \frac{185600}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\left(-\frac{32}{9}\right)±48}{2\times \frac{145}{9}}
Tuhia te pūtakerua o te 2304.
y=\frac{\frac{32}{9}±48}{2\times \frac{145}{9}}
Ko te tauaro o 4\times \frac{1}{3}\left(-\frac{4}{3}\right)\times 2 ko \frac{32}{9}.
y=\frac{\frac{32}{9}±48}{\frac{290}{9}}
Whakareatia 2 ki te 9+4\left(-\frac{4}{3}\right)^{2}.
y=\frac{\frac{464}{9}}{\frac{290}{9}}
Nā, me whakaoti te whārite y=\frac{\frac{32}{9}±48}{\frac{290}{9}} ina he tāpiri te ±. Tāpiri \frac{32}{9} ki te 48.
y=\frac{8}{5}
Whakawehe \frac{464}{9} ki te \frac{290}{9} mā te whakarea \frac{464}{9} ki te tau huripoki o \frac{290}{9}.
y=-\frac{\frac{400}{9}}{\frac{290}{9}}
Nā, me whakaoti te whārite y=\frac{\frac{32}{9}±48}{\frac{290}{9}} ina he tango te ±. Tango 48 mai i \frac{32}{9}.
y=-\frac{40}{29}
Whakawehe -\frac{400}{9} ki te \frac{290}{9} mā te whakarea -\frac{400}{9} ki te tau huripoki o \frac{290}{9}.
x=-\frac{4}{3}\times \frac{8}{5}+\frac{1}{3}
E rua ngā otinga mō y: \frac{8}{5} me -\frac{40}{29}. Me whakakapi \frac{8}{5} mō y ki te whārite x=-\frac{4}{3}y+\frac{1}{3} hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{32}{15}+\frac{1}{3}
Whakareatia -\frac{4}{3} ki te \frac{8}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{9}{5}
Tāpiri -\frac{4}{3}\times \frac{8}{5} ki te \frac{1}{3}.
x=-\frac{4}{3}\left(-\frac{40}{29}\right)+\frac{1}{3}
Me whakakapi te -\frac{40}{29} ināianei mō te y ki te whārite x=-\frac{4}{3}y+\frac{1}{3} ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{160}{87}+\frac{1}{3}
Whakareatia -\frac{4}{3} ki te -\frac{40}{29} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{63}{29}
Tāpiri -\frac{40}{29}\left(-\frac{4}{3}\right) ki te \frac{1}{3}.
x=-\frac{9}{5},y=\frac{8}{5}\text{ or }x=\frac{63}{29},y=-\frac{40}{29}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}