Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4y^{2}=4
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 4.
y=\frac{\sqrt{2}x}{4}
Whakaarohia te whārite tuarua. Tuhia te \frac{\sqrt{2}}{4}x hei hautanga kotahi.
y-\frac{\sqrt{2}x}{4}=0
Tangohia te \frac{\sqrt{2}x}{4} mai i ngā taha e rua.
4y-\sqrt{2}x=0
Whakareatia ngā taha e rua o te whārite ki te 4.
-\sqrt{2}x+4y=0
Whakaraupapatia anō ngā kīanga tau.
\left(-\sqrt{2}\right)x+4y=0,4y^{2}+x^{2}=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\left(-\sqrt{2}\right)x+4y=0
Whakaotia te \left(-\sqrt{2}\right)x+4y=0 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
\left(-\sqrt{2}\right)x=-4y
Me tango 4y mai i ngā taha e rua o te whārite.
x=2\sqrt{2}y
Whakawehea ngā taha e rua ki te -\sqrt{2}.
4y^{2}+\left(2\sqrt{2}y\right)^{2}=4
Whakakapia te 2\sqrt{2}y mō te x ki tērā atu whārite, 4y^{2}+x^{2}=4.
4y^{2}+\left(2\sqrt{2}\right)^{2}y^{2}=4
Pūrua 2\sqrt{2}y.
\left(\left(2\sqrt{2}\right)^{2}+4\right)y^{2}=4
Tāpiri 4y^{2} ki te \left(2\sqrt{2}\right)^{2}y^{2}.
\left(\left(2\sqrt{2}\right)^{2}+4\right)y^{2}-4=0
Me tango 4 mai i ngā taha e rua o te whārite.
y=\frac{0±\sqrt{0^{2}-4\left(\left(2\sqrt{2}\right)^{2}+4\right)\left(-4\right)}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4+1\times \left(2\sqrt{2}\right)^{2} mō a, 1\times 0\times 2\times 2\sqrt{2} mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(\left(2\sqrt{2}\right)^{2}+4\right)\left(-4\right)}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Pūrua 1\times 0\times 2\times 2\sqrt{2}.
y=\frac{0±\sqrt{-48\left(-4\right)}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Whakareatia -4 ki te 4+1\times \left(2\sqrt{2}\right)^{2}.
y=\frac{0±\sqrt{192}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Whakareatia -48 ki te -4.
y=\frac{0±8\sqrt{3}}{2\left(\left(2\sqrt{2}\right)^{2}+4\right)}
Tuhia te pūtakerua o te 192.
y=\frac{0±8\sqrt{3}}{24}
Whakareatia 2 ki te 4+1\times \left(2\sqrt{2}\right)^{2}.
y=\frac{\sqrt{3}}{3}
Nā, me whakaoti te whārite y=\frac{0±8\sqrt{3}}{24} ina he tāpiri te ±.
y=-\frac{\sqrt{3}}{3}
Nā, me whakaoti te whārite y=\frac{0±8\sqrt{3}}{24} ina he tango te ±.
x=2\sqrt{2}\times \frac{\sqrt{3}}{3}
E rua ngā otinga mō y: \frac{\sqrt{3}}{3} me -\frac{\sqrt{3}}{3}. Me whakakapi \frac{\sqrt{3}}{3} mō y ki te whārite x=2\sqrt{2}y hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=2\sqrt{2}\left(-\frac{\sqrt{3}}{3}\right)
Me whakakapi te -\frac{\sqrt{3}}{3} ināianei mō te y ki te whārite x=2\sqrt{2}y ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=2\sqrt{2}\times \frac{\sqrt{3}}{3},y=\frac{\sqrt{3}}{3}\text{ or }x=2\sqrt{2}\left(-\frac{\sqrt{3}}{3}\right),y=-\frac{\sqrt{3}}{3}
Kua oti te pūnaha te whakatau.