Whakaoti mō x, y
x=4
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\left(x+2\right)+4\left(y-5\right)=5x+20
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 2,5,4.
10x+20+4\left(y-5\right)=5x+20
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+2.
10x+20+4y-20=5x+20
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-5.
10x+4y=5x+20
Tangohia te 20 i te 20, ka 0.
10x+4y-5x=20
Tangohia te 5x mai i ngā taha e rua.
5x+4y=20
Pahekotia te 10x me -5x, ka 5x.
3x+3y=x-1+9
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 3.
3x+3y=x+8
Tāpirihia te -1 ki te 9, ka 8.
3x+3y-x=8
Tangohia te x mai i ngā taha e rua.
2x+3y=8
Pahekotia te 3x me -x, ka 2x.
5x+4y=20,2x+3y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+4y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-4y+20
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-4y+20\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{4}{5}y+4
Whakareatia \frac{1}{5} ki te -4y+20.
2\left(-\frac{4}{5}y+4\right)+3y=8
Whakakapia te -\frac{4y}{5}+4 mō te x ki tērā atu whārite, 2x+3y=8.
-\frac{8}{5}y+8+3y=8
Whakareatia 2 ki te -\frac{4y}{5}+4.
\frac{7}{5}y+8=8
Tāpiri -\frac{8y}{5} ki te 3y.
\frac{7}{5}y=0
Me tango 8 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=4
Whakaurua te 0 mō y ki x=-\frac{4}{5}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4,y=0
Kua oti te pūnaha te whakatau.
10\left(x+2\right)+4\left(y-5\right)=5x+20
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 2,5,4.
10x+20+4\left(y-5\right)=5x+20
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+2.
10x+20+4y-20=5x+20
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-5.
10x+4y=5x+20
Tangohia te 20 i te 20, ka 0.
10x+4y-5x=20
Tangohia te 5x mai i ngā taha e rua.
5x+4y=20
Pahekotia te 10x me -5x, ka 5x.
3x+3y=x-1+9
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 3.
3x+3y=x+8
Tāpirihia te -1 ki te 9, ka 8.
3x+3y-x=8
Tangohia te x mai i ngā taha e rua.
2x+3y=8
Pahekotia te 3x me -x, ka 2x.
5x+4y=20,2x+3y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&4\\2&3\end{matrix}\right))\left(\begin{matrix}5&4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&4\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&3\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-4\times 2}&-\frac{4}{5\times 3-4\times 2}\\-\frac{2}{5\times 3-4\times 2}&\frac{5}{5\times 3-4\times 2}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{4}{7}\\-\frac{2}{7}&\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 20-\frac{4}{7}\times 8\\-\frac{2}{7}\times 20+\frac{5}{7}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=0
Tangohia ngā huānga poukapa x me y.
10\left(x+2\right)+4\left(y-5\right)=5x+20
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 2,5,4.
10x+20+4\left(y-5\right)=5x+20
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+2.
10x+20+4y-20=5x+20
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-5.
10x+4y=5x+20
Tangohia te 20 i te 20, ka 0.
10x+4y-5x=20
Tangohia te 5x mai i ngā taha e rua.
5x+4y=20
Pahekotia te 10x me -5x, ka 5x.
3x+3y=x-1+9
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 3.
3x+3y=x+8
Tāpirihia te -1 ki te 9, ka 8.
3x+3y-x=8
Tangohia te x mai i ngā taha e rua.
2x+3y=8
Pahekotia te 3x me -x, ka 2x.
5x+4y=20,2x+3y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\times 4y=2\times 20,5\times 2x+5\times 3y=5\times 8
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+8y=40,10x+15y=40
Whakarūnātia.
10x-10x+8y-15y=40-40
Me tango 10x+15y=40 mai i 10x+8y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-15y=40-40
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=40-40
Tāpiri 8y ki te -15y.
-7y=0
Tāpiri 40 ki te -40.
y=0
Whakawehea ngā taha e rua ki te -7.
2x=8
Whakaurua te 0 mō y ki 2x+3y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Whakawehea ngā taha e rua ki te 2.
x=4,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}