Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(x+1y-1\right)+2\left(y-1\right)=54
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+3y-3+2\left(y-1\right)=54
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1y-1.
3x+3y-3+2y-2=54
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
3x+5y-3-2=54
Pahekotia te 3y me 2y, ka 5y.
3x+5y-5=54
Tangohia te 2 i te -3, ka -5.
3x+5y=54+5
Me tāpiri te 5 ki ngā taha e rua.
3x+5y=59
Tāpirihia te 54 ki te 5, ka 59.
2\left(x-1\right)+3\left(y+1\right)=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x-2+3\left(y+1\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
2x-2+3y+3=48
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+1.
2x+1+3y=48
Tāpirihia te -2 ki te 3, ka 1.
2x+3y=48-1
Tangohia te 1 mai i ngā taha e rua.
2x+3y=47
Tangohia te 1 i te 48, ka 47.
3x+5y=59,2x+3y=47
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=59
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y+59
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y+59\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y+\frac{59}{3}
Whakareatia \frac{1}{3} ki te -5y+59.
2\left(-\frac{5}{3}y+\frac{59}{3}\right)+3y=47
Whakakapia te \frac{-5y+59}{3} mō te x ki tērā atu whārite, 2x+3y=47.
-\frac{10}{3}y+\frac{118}{3}+3y=47
Whakareatia 2 ki te \frac{-5y+59}{3}.
-\frac{1}{3}y+\frac{118}{3}=47
Tāpiri -\frac{10y}{3} ki te 3y.
-\frac{1}{3}y=\frac{23}{3}
Me tango \frac{118}{3} mai i ngā taha e rua o te whārite.
y=-23
Me whakarea ngā taha e rua ki te -3.
x=-\frac{5}{3}\left(-23\right)+\frac{59}{3}
Whakaurua te -23 mō y ki x=-\frac{5}{3}y+\frac{59}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{115+59}{3}
Whakareatia -\frac{5}{3} ki te -23.
x=58
Tāpiri \frac{59}{3} ki te \frac{115}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=58,y=-23
Kua oti te pūnaha te whakatau.
3\left(x+1y-1\right)+2\left(y-1\right)=54
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+3y-3+2\left(y-1\right)=54
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1y-1.
3x+3y-3+2y-2=54
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
3x+5y-3-2=54
Pahekotia te 3y me 2y, ka 5y.
3x+5y-5=54
Tangohia te 2 i te -3, ka -5.
3x+5y=54+5
Me tāpiri te 5 ki ngā taha e rua.
3x+5y=59
Tāpirihia te 54 ki te 5, ka 59.
2\left(x-1\right)+3\left(y+1\right)=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x-2+3\left(y+1\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
2x-2+3y+3=48
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+1.
2x+1+3y=48
Tāpirihia te -2 ki te 3, ka 1.
2x+3y=48-1
Tangohia te 1 mai i ngā taha e rua.
2x+3y=47
Tangohia te 1 i te 48, ka 47.
3x+5y=59,2x+3y=47
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}59\\47\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}3&5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}59\\47\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}59\\47\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}59\\47\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-5\times 2}&-\frac{5}{3\times 3-5\times 2}\\-\frac{2}{3\times 3-5\times 2}&\frac{3}{3\times 3-5\times 2}\end{matrix}\right)\left(\begin{matrix}59\\47\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&5\\2&-3\end{matrix}\right)\left(\begin{matrix}59\\47\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 59+5\times 47\\2\times 59-3\times 47\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}58\\-23\end{matrix}\right)
Mahia ngā tātaitanga.
x=58,y=-23
Tangohia ngā huānga poukapa x me y.
3\left(x+1y-1\right)+2\left(y-1\right)=54
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+3y-3+2\left(y-1\right)=54
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1y-1.
3x+3y-3+2y-2=54
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
3x+5y-3-2=54
Pahekotia te 3y me 2y, ka 5y.
3x+5y-5=54
Tangohia te 2 i te -3, ka -5.
3x+5y=54+5
Me tāpiri te 5 ki ngā taha e rua.
3x+5y=59
Tāpirihia te 54 ki te 5, ka 59.
2\left(x-1\right)+3\left(y+1\right)=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x-2+3\left(y+1\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
2x-2+3y+3=48
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+1.
2x+1+3y=48
Tāpirihia te -2 ki te 3, ka 1.
2x+3y=48-1
Tangohia te 1 mai i ngā taha e rua.
2x+3y=47
Tangohia te 1 i te 48, ka 47.
3x+5y=59,2x+3y=47
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 5y=2\times 59,3\times 2x+3\times 3y=3\times 47
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+10y=118,6x+9y=141
Whakarūnātia.
6x-6x+10y-9y=118-141
Me tango 6x+9y=141 mai i 6x+10y=118 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-9y=118-141
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=118-141
Tāpiri 10y ki te -9y.
y=-23
Tāpiri 118 ki te -141.
2x+3\left(-23\right)=47
Whakaurua te -23 mō y ki 2x+3y=47. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-69=47
Whakareatia 3 ki te -23.
2x=116
Me tāpiri 69 ki ngā taha e rua o te whārite.
x=58
Whakawehea ngā taha e rua ki te 2.
x=58,y=-23
Kua oti te pūnaha te whakatau.