Whakaoti mō x, y
x=3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x+1\right)=2\left(y+2\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+2,3.
3x+3=2\left(y+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
3x+3=2y+4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+2.
3x+3-2y=4
Tangohia te 2y mai i ngā taha e rua.
3x-2y=4-3
Tangohia te 3 mai i ngā taha e rua.
3x-2y=1
Tangohia te 3 i te 4, ka 1.
3\left(x-2\right)=y-1
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-1,3.
3x-6=y-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-6-y=-1
Tangohia te y mai i ngā taha e rua.
3x-y=-1+6
Me tāpiri te 6 ki ngā taha e rua.
3x-y=5
Tāpirihia te -1 ki te 6, ka 5.
3x-2y=1,3x-y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y+1
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+1\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+\frac{1}{3}
Whakareatia \frac{1}{3} ki te 2y+1.
3\left(\frac{2}{3}y+\frac{1}{3}\right)-y=5
Whakakapia te \frac{2y+1}{3} mō te x ki tērā atu whārite, 3x-y=5.
2y+1-y=5
Whakareatia 3 ki te \frac{2y+1}{3}.
y+1=5
Tāpiri 2y ki te -y.
y=4
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{2}{3}\times 4+\frac{1}{3}
Whakaurua te 4 mō y ki x=\frac{2}{3}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8+1}{3}
Whakareatia \frac{2}{3} ki te 4.
x=3
Tāpiri \frac{1}{3} ki te \frac{8}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=4
Kua oti te pūnaha te whakatau.
3\left(x+1\right)=2\left(y+2\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+2,3.
3x+3=2\left(y+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
3x+3=2y+4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+2.
3x+3-2y=4
Tangohia te 2y mai i ngā taha e rua.
3x-2y=4-3
Tangohia te 3 mai i ngā taha e rua.
3x-2y=1
Tangohia te 3 i te 4, ka 1.
3\left(x-2\right)=y-1
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-1,3.
3x-6=y-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-6-y=-1
Tangohia te y mai i ngā taha e rua.
3x-y=-1+6
Me tāpiri te 6 ki ngā taha e rua.
3x-y=5
Tāpirihia te -1 ki te 6, ka 5.
3x-2y=1,3x-y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 3\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 3\right)}\\-\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}+\frac{2}{3}\times 5\\-1+5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=4
Tangohia ngā huānga poukapa x me y.
3\left(x+1\right)=2\left(y+2\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+2,3.
3x+3=2\left(y+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+1.
3x+3=2y+4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+2.
3x+3-2y=4
Tangohia te 2y mai i ngā taha e rua.
3x-2y=4-3
Tangohia te 3 mai i ngā taha e rua.
3x-2y=1
Tangohia te 3 i te 4, ka 1.
3\left(x-2\right)=y-1
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe y ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o y-1,3.
3x-6=y-1
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
3x-6-y=-1
Tangohia te y mai i ngā taha e rua.
3x-y=-1+6
Me tāpiri te 6 ki ngā taha e rua.
3x-y=5
Tāpirihia te -1 ki te 6, ka 5.
3x-2y=1,3x-y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x-2y+y=1-5
Me tango 3x-y=5 mai i 3x-2y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+y=1-5
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=1-5
Tāpiri -2y ki te y.
-y=-4
Tāpiri 1 ki te -5.
y=4
Whakawehea ngā taha e rua ki te -1.
3x-4=5
Whakaurua te 4 mō y ki 3x-y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=9
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 3.
x=3,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}