Whakaoti mō k, L
k=20
L=\frac{1}{5}=0.2
Tohaina
Kua tāruatia ki te papatopenga
k=100L
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe L ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te L.
5\times 100L+50L=110
Whakakapia te 100L mō te k ki tērā atu whārite, 5k+50L=110.
500L+50L=110
Whakareatia 5 ki te 100L.
550L=110
Tāpiri 500L ki te 50L.
L=\frac{1}{5}
Whakawehea ngā taha e rua ki te 550.
k=100\times \frac{1}{5}
Whakaurua te \frac{1}{5} mō L ki k=100L. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
k=20
Whakareatia 100 ki te \frac{1}{5}.
k=20,L=\frac{1}{5}
Kua oti te pūnaha te whakatau.
k=100L
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe L ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te L.
k-100L=0
Tangohia te 100L mai i ngā taha e rua.
k-100L=0,5k+50L=110
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-100\\5&50\end{matrix}\right)\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}0\\110\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}1&-100\\5&50\end{matrix}\right)\left(\begin{matrix}k\\L\end{matrix}\right)=inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}0\\110\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-100\\5&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\L\end{matrix}\right)=inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}0\\110\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}k\\L\end{matrix}\right)=inverse(\left(\begin{matrix}1&-100\\5&50\end{matrix}\right))\left(\begin{matrix}0\\110\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-\left(-100\times 5\right)}&-\frac{-100}{50-\left(-100\times 5\right)}\\-\frac{5}{50-\left(-100\times 5\right)}&\frac{1}{50-\left(-100\times 5\right)}\end{matrix}\right)\left(\begin{matrix}0\\110\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{1}{110}&\frac{1}{550}\end{matrix}\right)\left(\begin{matrix}0\\110\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 110\\\frac{1}{550}\times 110\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}k\\L\end{matrix}\right)=\left(\begin{matrix}20\\\frac{1}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
k=20,L=\frac{1}{5}
Tangohia ngā huānga poukapa k me L.
k=100L
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe L ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te L.
k-100L=0
Tangohia te 100L mai i ngā taha e rua.
k-100L=0,5k+50L=110
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5k+5\left(-100\right)L=0,5k+50L=110
Kia ōrite ai a k me 5k, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5k-500L=0,5k+50L=110
Whakarūnātia.
5k-5k-500L-50L=-110
Me tango 5k+50L=110 mai i 5k-500L=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-500L-50L=-110
Tāpiri 5k ki te -5k. Ka whakakore atu ngā kupu 5k me -5k, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-550L=-110
Tāpiri -500L ki te -50L.
L=\frac{1}{5}
Whakawehea ngā taha e rua ki te -550.
5k+50\times \frac{1}{5}=110
Whakaurua te \frac{1}{5} mō L ki 5k+50L=110. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
5k+10=110
Whakareatia 50 ki te \frac{1}{5}.
5k=100
Me tango 10 mai i ngā taha e rua o te whārite.
k=20
Whakawehea ngā taha e rua ki te 5.
k=20,L=\frac{1}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}