Whakaoti mō x, y
x=1
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(9x+4y\right)-3\left(5x-11\right)=78-6y
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
18x+8y-3\left(5x-11\right)=78-6y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x+4y.
18x+8y-15x+33=78-6y
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x-11.
3x+8y+33=78-6y
Pahekotia te 18x me -15x, ka 3x.
3x+8y+33+6y=78
Me tāpiri te 6y ki ngā taha e rua.
3x+14y+33=78
Pahekotia te 8y me 6y, ka 14y.
3x+14y=78-33
Tangohia te 33 mai i ngā taha e rua.
3x+14y=45
Tangohia te 33 i te 78, ka 45.
3x+14y=45,13x-7y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+14y=45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-14y+45
Me tango 14y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-14y+45\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{14}{3}y+15
Whakareatia \frac{1}{3} ki te -14y+45.
13\left(-\frac{14}{3}y+15\right)-7y=-8
Whakakapia te -\frac{14y}{3}+15 mō te x ki tērā atu whārite, 13x-7y=-8.
-\frac{182}{3}y+195-7y=-8
Whakareatia 13 ki te -\frac{14y}{3}+15.
-\frac{203}{3}y+195=-8
Tāpiri -\frac{182y}{3} ki te -7y.
-\frac{203}{3}y=-203
Me tango 195 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{203}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{14}{3}\times 3+15
Whakaurua te 3 mō y ki x=-\frac{14}{3}y+15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-14+15
Whakareatia -\frac{14}{3} ki te 3.
x=1
Tāpiri 15 ki te -14.
x=1,y=3
Kua oti te pūnaha te whakatau.
2\left(9x+4y\right)-3\left(5x-11\right)=78-6y
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
18x+8y-3\left(5x-11\right)=78-6y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x+4y.
18x+8y-15x+33=78-6y
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x-11.
3x+8y+33=78-6y
Pahekotia te 18x me -15x, ka 3x.
3x+8y+33+6y=78
Me tāpiri te 6y ki ngā taha e rua.
3x+14y+33=78
Pahekotia te 8y me 6y, ka 14y.
3x+14y=78-33
Tangohia te 33 mai i ngā taha e rua.
3x+14y=45
Tangohia te 33 i te 78, ka 45.
3x+14y=45,13x-7y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&14\\13&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&14\\13&-7\end{matrix}\right))\left(\begin{matrix}3&14\\13&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&-7\end{matrix}\right))\left(\begin{matrix}45\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&14\\13&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&-7\end{matrix}\right))\left(\begin{matrix}45\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&14\\13&-7\end{matrix}\right))\left(\begin{matrix}45\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3\left(-7\right)-14\times 13}&-\frac{14}{3\left(-7\right)-14\times 13}\\-\frac{13}{3\left(-7\right)-14\times 13}&\frac{3}{3\left(-7\right)-14\times 13}\end{matrix}\right)\left(\begin{matrix}45\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{29}&\frac{2}{29}\\\frac{13}{203}&-\frac{3}{203}\end{matrix}\right)\left(\begin{matrix}45\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{29}\times 45+\frac{2}{29}\left(-8\right)\\\frac{13}{203}\times 45-\frac{3}{203}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=3
Tangohia ngā huānga poukapa x me y.
2\left(9x+4y\right)-3\left(5x-11\right)=78-6y
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
18x+8y-3\left(5x-11\right)=78-6y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x+4y.
18x+8y-15x+33=78-6y
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x-11.
3x+8y+33=78-6y
Pahekotia te 18x me -15x, ka 3x.
3x+8y+33+6y=78
Me tāpiri te 6y ki ngā taha e rua.
3x+14y+33=78
Pahekotia te 8y me 6y, ka 14y.
3x+14y=78-33
Tangohia te 33 mai i ngā taha e rua.
3x+14y=45
Tangohia te 33 i te 78, ka 45.
3x+14y=45,13x-7y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
13\times 3x+13\times 14y=13\times 45,3\times 13x+3\left(-7\right)y=3\left(-8\right)
Kia ōrite ai a 3x me 13x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 13 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
39x+182y=585,39x-21y=-24
Whakarūnātia.
39x-39x+182y+21y=585+24
Me tango 39x-21y=-24 mai i 39x+182y=585 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
182y+21y=585+24
Tāpiri 39x ki te -39x. Ka whakakore atu ngā kupu 39x me -39x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
203y=585+24
Tāpiri 182y ki te 21y.
203y=609
Tāpiri 585 ki te 24.
y=3
Whakawehea ngā taha e rua ki te 203.
13x-7\times 3=-8
Whakaurua te 3 mō y ki 13x-7y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
13x-21=-8
Whakareatia -7 ki te 3.
13x=13
Me tāpiri 21 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 13.
x=1,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}