Whakaoti mō y, z
y=1
z=4
Tohaina
Kua tāruatia ki te papatopenga
2\left(6-5y+2z\right)=3\left(16+2y-3z\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
12-10y+4z=3\left(16+2y-3z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6-5y+2z.
12-10y+4z=48+6y-9z
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 16+2y-3z.
12-10y+4z-6y=48-9z
Tangohia te 6y mai i ngā taha e rua.
12-16y+4z=48-9z
Pahekotia te -10y me -6y, ka -16y.
12-16y+4z+9z=48
Me tāpiri te 9z ki ngā taha e rua.
12-16y+13z=48
Pahekotia te 4z me 9z, ka 13z.
-16y+13z=48-12
Tangohia te 12 mai i ngā taha e rua.
-16y+13z=36
Tangohia te 12 i te 48, ka 36.
4\left(6-5y+2z\right)=3\left(1-5y+4z\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
24-20y+8z=3\left(1-5y+4z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 6-5y+2z.
24-20y+8z=3-15y+12z
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1-5y+4z.
24-20y+8z+15y=3+12z
Me tāpiri te 15y ki ngā taha e rua.
24-5y+8z=3+12z
Pahekotia te -20y me 15y, ka -5y.
24-5y+8z-12z=3
Tangohia te 12z mai i ngā taha e rua.
24-5y-4z=3
Pahekotia te 8z me -12z, ka -4z.
-5y-4z=3-24
Tangohia te 24 mai i ngā taha e rua.
-5y-4z=-21
Tangohia te 24 i te 3, ka -21.
-16y+13z=36,-5y-4z=-21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-16y+13z=36
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-16y=-13z+36
Me tango 13z mai i ngā taha e rua o te whārite.
y=-\frac{1}{16}\left(-13z+36\right)
Whakawehea ngā taha e rua ki te -16.
y=\frac{13}{16}z-\frac{9}{4}
Whakareatia -\frac{1}{16} ki te -13z+36.
-5\left(\frac{13}{16}z-\frac{9}{4}\right)-4z=-21
Whakakapia te \frac{13z}{16}-\frac{9}{4} mō te y ki tērā atu whārite, -5y-4z=-21.
-\frac{65}{16}z+\frac{45}{4}-4z=-21
Whakareatia -5 ki te \frac{13z}{16}-\frac{9}{4}.
-\frac{129}{16}z+\frac{45}{4}=-21
Tāpiri -\frac{65z}{16} ki te -4z.
-\frac{129}{16}z=-\frac{129}{4}
Me tango \frac{45}{4} mai i ngā taha e rua o te whārite.
z=4
Whakawehea ngā taha e rua o te whārite ki te -\frac{129}{16}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{13}{16}\times 4-\frac{9}{4}
Whakaurua te 4 mō z ki y=\frac{13}{16}z-\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{13-9}{4}
Whakareatia \frac{13}{16} ki te 4.
y=1
Tāpiri -\frac{9}{4} ki te \frac{13}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=1,z=4
Kua oti te pūnaha te whakatau.
2\left(6-5y+2z\right)=3\left(16+2y-3z\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
12-10y+4z=3\left(16+2y-3z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6-5y+2z.
12-10y+4z=48+6y-9z
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 16+2y-3z.
12-10y+4z-6y=48-9z
Tangohia te 6y mai i ngā taha e rua.
12-16y+4z=48-9z
Pahekotia te -10y me -6y, ka -16y.
12-16y+4z+9z=48
Me tāpiri te 9z ki ngā taha e rua.
12-16y+13z=48
Pahekotia te 4z me 9z, ka 13z.
-16y+13z=48-12
Tangohia te 12 mai i ngā taha e rua.
-16y+13z=36
Tangohia te 12 i te 48, ka 36.
4\left(6-5y+2z\right)=3\left(1-5y+4z\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
24-20y+8z=3\left(1-5y+4z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 6-5y+2z.
24-20y+8z=3-15y+12z
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1-5y+4z.
24-20y+8z+15y=3+12z
Me tāpiri te 15y ki ngā taha e rua.
24-5y+8z=3+12z
Pahekotia te -20y me 15y, ka -5y.
24-5y+8z-12z=3
Tangohia te 12z mai i ngā taha e rua.
24-5y-4z=3
Pahekotia te 8z me -12z, ka -4z.
-5y-4z=3-24
Tangohia te 24 mai i ngā taha e rua.
-5y-4z=-21
Tangohia te 24 i te 3, ka -21.
-16y+13z=36,-5y-4z=-21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}36\\-21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right))\left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right))\left(\begin{matrix}36\\-21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right))\left(\begin{matrix}36\\-21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}-16&13\\-5&-4\end{matrix}\right))\left(\begin{matrix}36\\-21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-16\left(-4\right)-13\left(-5\right)}&-\frac{13}{-16\left(-4\right)-13\left(-5\right)}\\-\frac{-5}{-16\left(-4\right)-13\left(-5\right)}&-\frac{16}{-16\left(-4\right)-13\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}36\\-21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{129}&-\frac{13}{129}\\\frac{5}{129}&-\frac{16}{129}\end{matrix}\right)\left(\begin{matrix}36\\-21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{129}\times 36-\frac{13}{129}\left(-21\right)\\\frac{5}{129}\times 36-\frac{16}{129}\left(-21\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=1,z=4
Tangohia ngā huānga poukapa y me z.
2\left(6-5y+2z\right)=3\left(16+2y-3z\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
12-10y+4z=3\left(16+2y-3z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6-5y+2z.
12-10y+4z=48+6y-9z
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 16+2y-3z.
12-10y+4z-6y=48-9z
Tangohia te 6y mai i ngā taha e rua.
12-16y+4z=48-9z
Pahekotia te -10y me -6y, ka -16y.
12-16y+4z+9z=48
Me tāpiri te 9z ki ngā taha e rua.
12-16y+13z=48
Pahekotia te 4z me 9z, ka 13z.
-16y+13z=48-12
Tangohia te 12 mai i ngā taha e rua.
-16y+13z=36
Tangohia te 12 i te 48, ka 36.
4\left(6-5y+2z\right)=3\left(1-5y+4z\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
24-20y+8z=3\left(1-5y+4z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 6-5y+2z.
24-20y+8z=3-15y+12z
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1-5y+4z.
24-20y+8z+15y=3+12z
Me tāpiri te 15y ki ngā taha e rua.
24-5y+8z=3+12z
Pahekotia te -20y me 15y, ka -5y.
24-5y+8z-12z=3
Tangohia te 12z mai i ngā taha e rua.
24-5y-4z=3
Pahekotia te 8z me -12z, ka -4z.
-5y-4z=3-24
Tangohia te 24 mai i ngā taha e rua.
-5y-4z=-21
Tangohia te 24 i te 3, ka -21.
-16y+13z=36,-5y-4z=-21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\left(-16\right)y-5\times 13z=-5\times 36,-16\left(-5\right)y-16\left(-4\right)z=-16\left(-21\right)
Kia ōrite ai a -16y me -5y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -16.
80y-65z=-180,80y+64z=336
Whakarūnātia.
80y-80y-65z-64z=-180-336
Me tango 80y+64z=336 mai i 80y-65z=-180 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-65z-64z=-180-336
Tāpiri 80y ki te -80y. Ka whakakore atu ngā kupu 80y me -80y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-129z=-180-336
Tāpiri -65z ki te -64z.
-129z=-516
Tāpiri -180 ki te -336.
z=4
Whakawehea ngā taha e rua ki te -129.
-5y-4\times 4=-21
Whakaurua te 4 mō z ki -5y-4z=-21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-5y-16=-21
Whakareatia -4 ki te 4.
-5y=-5
Me tāpiri 16 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te -5.
y=1,z=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}