\left. \begin{array} { l } { \frac { 3 } { 9 } + \frac { 5 } { 6 } = 1 } \\ { \frac { 9 } { 9 } - \frac { 5 } { 6 } = 1 } \end{array} \right.
Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{9}+\frac{5}{6}=1\text{ and }1-\frac{5}{6}=1
Whakawehea te 9 ki te 9, kia riro ko 1.
\frac{1}{3}+\frac{5}{6}=1\text{ and }1-\frac{5}{6}=1
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{2}{6}+\frac{5}{6}=1\text{ and }1-\frac{5}{6}=1
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{1}{3} me \frac{5}{6} ki te hautau me te tautūnga 6.
\frac{2+5}{6}=1\text{ and }1-\frac{5}{6}=1
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{5}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{6}=1\text{ and }1-\frac{5}{6}=1
Tāpirihia te 2 ki te 5, ka 7.
\frac{7}{6}=\frac{6}{6}\text{ and }1-\frac{5}{6}=1
Me tahuri te 1 ki te hautau \frac{6}{6}.
\text{false}\text{ and }1-\frac{5}{6}=1
Whakatauritea te \frac{7}{6} me te \frac{6}{6}.
\text{false}\text{ and }\frac{6}{6}-\frac{5}{6}=1
Me tahuri te 1 ki te hautau \frac{6}{6}.
\text{false}\text{ and }\frac{6-5}{6}=1
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{5}{6}, me tango rāua mā te tango i ō raua taurunga.
\text{false}\text{ and }\frac{1}{6}=1
Tangohia te 5 i te 6, ka 1.
\text{false}\text{ and }\frac{1}{6}=\frac{6}{6}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\text{false}\text{ and }\text{false}
Whakatauritea te \frac{1}{6} me te \frac{6}{6}.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}