Whakaoti mō w, y
y = \frac{20}{9} = 2\frac{2}{9} \approx 2.222222222
w=\frac{3}{8}=0.375
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}w+\frac{9}{8}+\frac{5}{4}w=\frac{3}{4}\left(4w+1\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{8} ki te 2w+3.
2w+\frac{9}{8}=\frac{3}{4}\left(4w+1\right)
Pahekotia te \frac{3}{4}w me \frac{5}{4}w, ka 2w.
2w+\frac{9}{8}=3w+\frac{3}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te 4w+1.
2w+\frac{9}{8}-3w=\frac{3}{4}
Tangohia te 3w mai i ngā taha e rua.
-w+\frac{9}{8}=\frac{3}{4}
Pahekotia te 2w me -3w, ka -w.
-w=\frac{3}{4}-\frac{9}{8}
Tangohia te \frac{9}{8} mai i ngā taha e rua.
-w=-\frac{3}{8}
Tangohia te \frac{9}{8} i te \frac{3}{4}, ka -\frac{3}{8}.
w=\frac{-\frac{3}{8}}{-1}
Whakawehea ngā taha e rua ki te -1.
w=\frac{-3}{8\left(-1\right)}
Tuhia te \frac{-\frac{3}{8}}{-1} hei hautanga kotahi.
w=\frac{-3}{-8}
Whakareatia te 8 ki te -1, ka -8.
w=\frac{3}{8}
Ka taea te hautanga \frac{-3}{-8} te whakamāmā ki te \frac{3}{8} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te y+7.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3y-5.
\frac{9}{4}y+\frac{21}{4}-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
Pahekotia te \frac{3}{4}y me \frac{3}{2}y, ka \frac{9}{4}y.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\left(2y-1\right)
Tangohia te \frac{5}{2} i te \frac{21}{4}, ka \frac{11}{4}.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y-\frac{9}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{9}{4} ki te 2y-1.
\frac{9}{4}y+\frac{11}{4}-\frac{9}{2}y=-\frac{9}{4}
Tangohia te \frac{9}{2}y mai i ngā taha e rua.
-\frac{9}{4}y+\frac{11}{4}=-\frac{9}{4}
Pahekotia te \frac{9}{4}y me -\frac{9}{2}y, ka -\frac{9}{4}y.
-\frac{9}{4}y=-\frac{9}{4}-\frac{11}{4}
Tangohia te \frac{11}{4} mai i ngā taha e rua.
-\frac{9}{4}y=-5
Tangohia te \frac{11}{4} i te -\frac{9}{4}, ka -5.
y=-5\left(-\frac{4}{9}\right)
Me whakarea ngā taha e rua ki te -\frac{4}{9}, te tau utu o -\frac{9}{4}.
y=\frac{20}{9}
Whakareatia te -5 ki te -\frac{4}{9}, ka \frac{20}{9}.
w=\frac{3}{8} y=\frac{20}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}