Whakaoti mō y, x, z
x=1
y=3
z=2
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{3}{2}y-\frac{1}{2}z-\frac{5}{2}
Me whakaoti te \frac{3}{2}y-x-\frac{1}{2}z=2.5 mō x.
2\left(\frac{3}{2}y-\frac{1}{2}z-\frac{5}{2}\right)-y-\frac{1}{2}z=-2 2z-\frac{1}{2}\left(\frac{3}{2}y-\frac{1}{2}z-\frac{5}{2}\right)-\frac{1}{2}y=2
Whakakapia te \frac{3}{2}y-\frac{1}{2}z-\frac{5}{2} mō te x i te whārite tuarua me te tuatoru.
y=\frac{3}{2}+\frac{3}{4}z z=\frac{1}{3}+\frac{5}{9}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{1}{3}+\frac{5}{9}\left(\frac{3}{2}+\frac{3}{4}z\right)
Whakakapia te \frac{3}{2}+\frac{3}{4}z mō te y i te whārite z=\frac{1}{3}+\frac{5}{9}y.
z=2
Me whakaoti te z=\frac{1}{3}+\frac{5}{9}\left(\frac{3}{2}+\frac{3}{4}z\right) mō z.
y=\frac{3}{2}+\frac{3}{4}\times 2
Whakakapia te 2 mō te z i te whārite y=\frac{3}{2}+\frac{3}{4}z.
y=3
Tātaitia te y i te y=\frac{3}{2}+\frac{3}{4}\times 2.
x=\frac{3}{2}\times 3-\frac{1}{2}\times 2-\frac{5}{2}
Whakakapia te 3 mō te y me te 2 mō z i te whārite x=\frac{3}{2}y-\frac{1}{2}z-\frac{5}{2}.
x=1
Tātaitia te x i te x=\frac{3}{2}\times 3-\frac{1}{2}\times 2-\frac{5}{2}.
y=3 x=1 z=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}