Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times 27x+45y=50400
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 50, arā, te tauraro pātahi he tino iti rawa te kitea o 25,10.
54x+45y=50400
Whakareatia te 2 ki te 27, ka 54.
54x+45y=50400,\frac{11}{10}x+\frac{43}{5}y=1028
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
54x+45y=50400
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
54x=-45y+50400
Me tango 45y mai i ngā taha e rua o te whārite.
x=\frac{1}{54}\left(-45y+50400\right)
Whakawehea ngā taha e rua ki te 54.
x=-\frac{5}{6}y+\frac{2800}{3}
Whakareatia \frac{1}{54} ki te -45y+50400.
\frac{11}{10}\left(-\frac{5}{6}y+\frac{2800}{3}\right)+\frac{43}{5}y=1028
Whakakapia te -\frac{5y}{6}+\frac{2800}{3} mō te x ki tērā atu whārite, \frac{11}{10}x+\frac{43}{5}y=1028.
-\frac{11}{12}y+\frac{3080}{3}+\frac{43}{5}y=1028
Whakareatia \frac{11}{10} ki te -\frac{5y}{6}+\frac{2800}{3}.
\frac{461}{60}y+\frac{3080}{3}=1028
Tāpiri -\frac{11y}{12} ki te \frac{43y}{5}.
\frac{461}{60}y=\frac{4}{3}
Me tango \frac{3080}{3} mai i ngā taha e rua o te whārite.
y=\frac{80}{461}
Whakawehea ngā taha e rua o te whārite ki te \frac{461}{60}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{6}\times \frac{80}{461}+\frac{2800}{3}
Whakaurua te \frac{80}{461} mō y ki x=-\frac{5}{6}y+\frac{2800}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{200}{1383}+\frac{2800}{3}
Whakareatia -\frac{5}{6} ki te \frac{80}{461} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{430200}{461}
Tāpiri \frac{2800}{3} ki te -\frac{200}{1383} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{430200}{461},y=\frac{80}{461}
Kua oti te pūnaha te whakatau.
2\times 27x+45y=50400
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 50, arā, te tauraro pātahi he tino iti rawa te kitea o 25,10.
54x+45y=50400
Whakareatia te 2 ki te 27, ka 54.
54x+45y=50400,\frac{11}{10}x+\frac{43}{5}y=1028
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50400\\1028\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right))\left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right))\left(\begin{matrix}50400\\1028\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right))\left(\begin{matrix}50400\\1028\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}54&45\\\frac{11}{10}&\frac{43}{5}\end{matrix}\right))\left(\begin{matrix}50400\\1028\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{43}{5}}{54\times \frac{43}{5}-45\times \frac{11}{10}}&-\frac{45}{54\times \frac{43}{5}-45\times \frac{11}{10}}\\-\frac{\frac{11}{10}}{54\times \frac{43}{5}-45\times \frac{11}{10}}&\frac{54}{54\times \frac{43}{5}-45\times \frac{11}{10}}\end{matrix}\right)\left(\begin{matrix}50400\\1028\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{86}{4149}&-\frac{50}{461}\\-\frac{11}{4149}&\frac{60}{461}\end{matrix}\right)\left(\begin{matrix}50400\\1028\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{86}{4149}\times 50400-\frac{50}{461}\times 1028\\-\frac{11}{4149}\times 50400+\frac{60}{461}\times 1028\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{430200}{461}\\\frac{80}{461}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{430200}{461},y=\frac{80}{461}
Tangohia ngā huānga poukapa x me y.
2\times 27x+45y=50400
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 50, arā, te tauraro pātahi he tino iti rawa te kitea o 25,10.
54x+45y=50400
Whakareatia te 2 ki te 27, ka 54.
54x+45y=50400,\frac{11}{10}x+\frac{43}{5}y=1028
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{11}{10}\times 54x+\frac{11}{10}\times 45y=\frac{11}{10}\times 50400,54\times \frac{11}{10}x+54\times \frac{43}{5}y=54\times 1028
Kia ōrite ai a 54x me \frac{11x}{10}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{11}{10} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 54.
\frac{297}{5}x+\frac{99}{2}y=55440,\frac{297}{5}x+\frac{2322}{5}y=55512
Whakarūnātia.
\frac{297}{5}x-\frac{297}{5}x+\frac{99}{2}y-\frac{2322}{5}y=55440-55512
Me tango \frac{297}{5}x+\frac{2322}{5}y=55512 mai i \frac{297}{5}x+\frac{99}{2}y=55440 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{99}{2}y-\frac{2322}{5}y=55440-55512
Tāpiri \frac{297x}{5} ki te -\frac{297x}{5}. Ka whakakore atu ngā kupu \frac{297x}{5} me -\frac{297x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{4149}{10}y=55440-55512
Tāpiri \frac{99y}{2} ki te -\frac{2322y}{5}.
-\frac{4149}{10}y=-72
Tāpiri 55440 ki te -55512.
y=\frac{80}{461}
Whakawehea ngā taha e rua o te whārite ki te -\frac{4149}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{11}{10}x+\frac{43}{5}\times \frac{80}{461}=1028
Whakaurua te \frac{80}{461} mō y ki \frac{11}{10}x+\frac{43}{5}y=1028. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{11}{10}x+\frac{688}{461}=1028
Whakareatia \frac{43}{5} ki te \frac{80}{461} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{11}{10}x=\frac{473220}{461}
Me tango \frac{688}{461} mai i ngā taha e rua o te whārite.
x=\frac{430200}{461}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{430200}{461},y=\frac{80}{461}
Kua oti te pūnaha te whakatau.