Whakaoti mō x, y
x=7
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(2x-y+3\right)-3\left(x-2y+3\right)=48
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
8x-4y+12-3\left(x-2y+3\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-y+3.
8x-4y+12-3x+6y-9=48
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2y+3.
5x-4y+12+6y-9=48
Pahekotia te 8x me -3x, ka 5x.
5x+2y+12-9=48
Pahekotia te -4y me 6y, ka 2y.
5x+2y+3=48
Tangohia te 9 i te 12, ka 3.
5x+2y=48-3
Tangohia te 3 mai i ngā taha e rua.
5x+2y=45
Tangohia te 3 i te 48, ka 45.
3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3.
9x-12y+9+4\left(4x-2y-9\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-4y+3.
9x-12y+9+16x-8y-36=48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4x-2y-9.
25x-12y+9-8y-36=48
Pahekotia te 9x me 16x, ka 25x.
25x-20y+9-36=48
Pahekotia te -12y me -8y, ka -20y.
25x-20y-27=48
Tangohia te 36 i te 9, ka -27.
25x-20y=48+27
Me tāpiri te 27 ki ngā taha e rua.
25x-20y=75
Tāpirihia te 48 ki te 27, ka 75.
5x+2y=45,25x-20y=75
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+45
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+45\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+9
Whakareatia \frac{1}{5} ki te -2y+45.
25\left(-\frac{2}{5}y+9\right)-20y=75
Whakakapia te -\frac{2y}{5}+9 mō te x ki tērā atu whārite, 25x-20y=75.
-10y+225-20y=75
Whakareatia 25 ki te -\frac{2y}{5}+9.
-30y+225=75
Tāpiri -10y ki te -20y.
-30y=-150
Me tango 225 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -30.
x=-\frac{2}{5}\times 5+9
Whakaurua te 5 mō y ki x=-\frac{2}{5}y+9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2+9
Whakareatia -\frac{2}{5} ki te 5.
x=7
Tāpiri 9 ki te -2.
x=7,y=5
Kua oti te pūnaha te whakatau.
4\left(2x-y+3\right)-3\left(x-2y+3\right)=48
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
8x-4y+12-3\left(x-2y+3\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-y+3.
8x-4y+12-3x+6y-9=48
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2y+3.
5x-4y+12+6y-9=48
Pahekotia te 8x me -3x, ka 5x.
5x+2y+12-9=48
Pahekotia te -4y me 6y, ka 2y.
5x+2y+3=48
Tangohia te 9 i te 12, ka 3.
5x+2y=48-3
Tangohia te 3 mai i ngā taha e rua.
5x+2y=45
Tangohia te 3 i te 48, ka 45.
3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3.
9x-12y+9+4\left(4x-2y-9\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-4y+3.
9x-12y+9+16x-8y-36=48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4x-2y-9.
25x-12y+9-8y-36=48
Pahekotia te 9x me 16x, ka 25x.
25x-20y+9-36=48
Pahekotia te -12y me -8y, ka -20y.
25x-20y-27=48
Tangohia te 36 i te 9, ka -27.
25x-20y=48+27
Me tāpiri te 27 ki ngā taha e rua.
25x-20y=75
Tāpirihia te 48 ki te 27, ka 75.
5x+2y=45,25x-20y=75
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\25&-20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\75\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\25&-20\end{matrix}\right))\left(\begin{matrix}5&2\\25&-20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\25&-20\end{matrix}\right))\left(\begin{matrix}45\\75\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\25&-20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\25&-20\end{matrix}\right))\left(\begin{matrix}45\\75\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\25&-20\end{matrix}\right))\left(\begin{matrix}45\\75\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{5\left(-20\right)-2\times 25}&-\frac{2}{5\left(-20\right)-2\times 25}\\-\frac{25}{5\left(-20\right)-2\times 25}&\frac{5}{5\left(-20\right)-2\times 25}\end{matrix}\right)\left(\begin{matrix}45\\75\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&\frac{1}{75}\\\frac{1}{6}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}45\\75\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 45+\frac{1}{75}\times 75\\\frac{1}{6}\times 45-\frac{1}{30}\times 75\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=5
Tangohia ngā huānga poukapa x me y.
4\left(2x-y+3\right)-3\left(x-2y+3\right)=48
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
8x-4y+12-3\left(x-2y+3\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-y+3.
8x-4y+12-3x+6y-9=48
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2y+3.
5x-4y+12+6y-9=48
Pahekotia te 8x me -3x, ka 5x.
5x+2y+12-9=48
Pahekotia te -4y me 6y, ka 2y.
5x+2y+3=48
Tangohia te 9 i te 12, ka 3.
5x+2y=48-3
Tangohia te 3 mai i ngā taha e rua.
5x+2y=45
Tangohia te 3 i te 48, ka 45.
3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3.
9x-12y+9+4\left(4x-2y-9\right)=48
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-4y+3.
9x-12y+9+16x-8y-36=48
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 4x-2y-9.
25x-12y+9-8y-36=48
Pahekotia te 9x me 16x, ka 25x.
25x-20y+9-36=48
Pahekotia te -12y me -8y, ka -20y.
25x-20y-27=48
Tangohia te 36 i te 9, ka -27.
25x-20y=48+27
Me tāpiri te 27 ki ngā taha e rua.
25x-20y=75
Tāpirihia te 48 ki te 27, ka 75.
5x+2y=45,25x-20y=75
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
25\times 5x+25\times 2y=25\times 45,5\times 25x+5\left(-20\right)y=5\times 75
Kia ōrite ai a 5x me 25x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 25 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
125x+50y=1125,125x-100y=375
Whakarūnātia.
125x-125x+50y+100y=1125-375
Me tango 125x-100y=375 mai i 125x+50y=1125 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
50y+100y=1125-375
Tāpiri 125x ki te -125x. Ka whakakore atu ngā kupu 125x me -125x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
150y=1125-375
Tāpiri 50y ki te 100y.
150y=750
Tāpiri 1125 ki te -375.
y=5
Whakawehea ngā taha e rua ki te 150.
25x-20\times 5=75
Whakaurua te 5 mō y ki 25x-20y=75. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
25x-100=75
Whakareatia -20 ki te 5.
25x=175
Me tāpiri 100 ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te 25.
x=7,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}