Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3=3y-2
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3y-2.
2x+3-3y=-2
Tangohia te 3y mai i ngā taha e rua.
2x-3y=-2-3
Tangohia te 3 mai i ngā taha e rua.
2x-3y=-5
Tangohia te 3 i te -2, ka -5.
2xy-5x-2y\left(x+3\right)=2x+1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2y-5.
2xy-5x-2y\left(x+3\right)-2x=1
Tangohia te 2x mai i ngā taha e rua.
2xy-5x-2yx-6y-2x=1
Whakamahia te āhuatanga tohatoha hei whakarea te -2y ki te x+3.
-5x-6y-2x=1
Pahekotia te 2xy me -2yx, ka 0.
-7x-6y=1
Pahekotia te -5x me -2x, ka -7x.
2x-3y=-5,-7x-6y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y-5
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-5\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-\frac{5}{2}
Whakareatia \frac{1}{2} ki te 3y-5.
-7\left(\frac{3}{2}y-\frac{5}{2}\right)-6y=1
Whakakapia te \frac{3y-5}{2} mō te x ki tērā atu whārite, -7x-6y=1.
-\frac{21}{2}y+\frac{35}{2}-6y=1
Whakareatia -7 ki te \frac{3y-5}{2}.
-\frac{33}{2}y+\frac{35}{2}=1
Tāpiri -\frac{21y}{2} ki te -6y.
-\frac{33}{2}y=-\frac{33}{2}
Me tango \frac{35}{2} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{33}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3-5}{2}
Whakaurua te 1 mō y ki x=\frac{3}{2}y-\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1
Tāpiri -\frac{5}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=1
Kua oti te pūnaha te whakatau.
2x+3=3y-2
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3y-2.
2x+3-3y=-2
Tangohia te 3y mai i ngā taha e rua.
2x-3y=-2-3
Tangohia te 3 mai i ngā taha e rua.
2x-3y=-5
Tangohia te 3 i te -2, ka -5.
2xy-5x-2y\left(x+3\right)=2x+1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2y-5.
2xy-5x-2y\left(x+3\right)-2x=1
Tangohia te 2x mai i ngā taha e rua.
2xy-5x-2yx-6y-2x=1
Whakamahia te āhuatanga tohatoha hei whakarea te -2y ki te x+3.
-5x-6y-2x=1
Pahekotia te 2xy me -2yx, ka 0.
-7x-6y=1
Pahekotia te -5x me -2x, ka -7x.
2x-3y=-5,-7x-6y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right))\left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-7&-6\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{2\left(-6\right)-\left(-3\left(-7\right)\right)}&-\frac{-3}{2\left(-6\right)-\left(-3\left(-7\right)\right)}\\-\frac{-7}{2\left(-6\right)-\left(-3\left(-7\right)\right)}&\frac{2}{2\left(-6\right)-\left(-3\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{1}{11}\\-\frac{7}{33}&-\frac{2}{33}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\left(-5\right)-\frac{1}{11}\\-\frac{7}{33}\left(-5\right)-\frac{2}{33}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=1
Tangohia ngā huānga poukapa x me y.
2x+3=3y-2
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3y-2.
2x+3-3y=-2
Tangohia te 3y mai i ngā taha e rua.
2x-3y=-2-3
Tangohia te 3 mai i ngā taha e rua.
2x-3y=-5
Tangohia te 3 i te -2, ka -5.
2xy-5x-2y\left(x+3\right)=2x+1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2y-5.
2xy-5x-2y\left(x+3\right)-2x=1
Tangohia te 2x mai i ngā taha e rua.
2xy-5x-2yx-6y-2x=1
Whakamahia te āhuatanga tohatoha hei whakarea te -2y ki te x+3.
-5x-6y-2x=1
Pahekotia te 2xy me -2yx, ka 0.
-7x-6y=1
Pahekotia te -5x me -2x, ka -7x.
2x-3y=-5,-7x-6y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\times 2x-7\left(-3\right)y=-7\left(-5\right),2\left(-7\right)x+2\left(-6\right)y=2
Kia ōrite ai a 2x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-14x+21y=35,-14x-12y=2
Whakarūnātia.
-14x+14x+21y+12y=35-2
Me tango -14x-12y=2 mai i -14x+21y=35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
21y+12y=35-2
Tāpiri -14x ki te 14x. Ka whakakore atu ngā kupu -14x me 14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
33y=35-2
Tāpiri 21y ki te 12y.
33y=33
Tāpiri 35 ki te -2.
y=1
Whakawehea ngā taha e rua ki te 33.
-7x-6=1
Whakaurua te 1 mō y ki -7x-6y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x=7
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te -7.
x=-1,y=1
Kua oti te pūnaha te whakatau.