Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3=3y-2
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki \frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3y-2.
2x+3-3y=-2
Tangohia te 3y mai i ngā taha e rua.
2x-3y=-2-3
Tangohia te 3 mai i ngā taha e rua.
2x-3y=-5
Tangohia te 3 i te -2, ka -5.
2xy+2x-2y\left(x+3\right)=2x+1
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2y+2.
2xy+2x-2y\left(x+3\right)-2x=1
Tangohia te 2x mai i ngā taha e rua.
2xy+2x-2yx-6y-2x=1
Whakamahia te āhuatanga tohatoha hei whakarea te -2y ki te x+3.
2x-6y-2x=1
Pahekotia te 2xy me -2yx, ka 0.
-6y=1
Pahekotia te 2x me -2x, ka 0.
y=-\frac{1}{6}
Whakawehea ngā taha e rua ki te -6.
2x-3\left(-\frac{1}{6}\right)=-5
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
2x+\frac{1}{2}=-5
Whakareatia te -3 ki te -\frac{1}{6}, ka \frac{1}{2}.
2x=-5-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
2x=-\frac{11}{2}
Tangohia te \frac{1}{2} i te -5, ka -\frac{11}{2}.
x=\frac{-\frac{11}{2}}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{-11}{2\times 2}
Tuhia te \frac{-\frac{11}{2}}{2} hei hautanga kotahi.
x=\frac{-11}{4}
Whakareatia te 2 ki te 2, ka 4.
x=-\frac{11}{4}
Ka taea te hautanga \frac{-11}{4} te tuhi anō ko -\frac{11}{4} mā te tango i te tohu tōraro.
x=-\frac{11}{4} y=-\frac{1}{6}
Kua oti te pūnaha te whakatau.