Whakaoti mō A, B
A=300
B=200
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{2}{3}A+B=400
Kōwhiria tētahi o ngā whārite ka whakaotia mō te A mā te wehe i te A i te taha mauī o te tohu ōrite.
\frac{2}{3}A=-B+400
Me tango B mai i ngā taha e rua o te whārite.
A=\frac{3}{2}\left(-B+400\right)
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
A=-\frac{3}{2}B+600
Whakareatia \frac{3}{2} ki te -B+400.
-\frac{3}{2}B+600+\frac{4}{5}B=460
Whakakapia te -\frac{3B}{2}+600 mō te A ki tērā atu whārite, A+\frac{4}{5}B=460.
-\frac{7}{10}B+600=460
Tāpiri -\frac{3B}{2} ki te \frac{4B}{5}.
-\frac{7}{10}B=-140
Me tango 600 mai i ngā taha e rua o te whārite.
B=200
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
A=-\frac{3}{2}\times 200+600
Whakaurua te 200 mō B ki A=-\frac{3}{2}B+600. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A=-300+600
Whakareatia -\frac{3}{2} ki te 200.
A=300
Tāpiri 600 ki te -300.
A=300,B=200
Kua oti te pūnaha te whakatau.
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}400\\460\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&1\\1&\frac{4}{5}\end{matrix}\right))\left(\begin{matrix}400\\460\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{4}{5}}{\frac{2}{3}\times \frac{4}{5}-1}&-\frac{1}{\frac{2}{3}\times \frac{4}{5}-1}\\-\frac{1}{\frac{2}{3}\times \frac{4}{5}-1}&\frac{\frac{2}{3}}{\frac{2}{3}\times \frac{4}{5}-1}\end{matrix}\right)\left(\begin{matrix}400\\460\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{7}&\frac{15}{7}\\\frac{15}{7}&-\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}400\\460\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{7}\times 400+\frac{15}{7}\times 460\\\frac{15}{7}\times 400-\frac{10}{7}\times 460\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Mahia ngā tātaitanga.
A=300,B=200
Tangohia ngā huānga poukapa A me B.
\frac{2}{3}A+B=400,A+\frac{4}{5}B=460
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{2}{3}A+B=400,\frac{2}{3}A+\frac{2}{3}\times \frac{4}{5}B=\frac{2}{3}\times 460
Kia ōrite ai a \frac{2A}{3} me A, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{2}{3}.
\frac{2}{3}A+B=400,\frac{2}{3}A+\frac{8}{15}B=\frac{920}{3}
Whakarūnātia.
\frac{2}{3}A-\frac{2}{3}A+B-\frac{8}{15}B=400-\frac{920}{3}
Me tango \frac{2}{3}A+\frac{8}{15}B=\frac{920}{3} mai i \frac{2}{3}A+B=400 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
B-\frac{8}{15}B=400-\frac{920}{3}
Tāpiri \frac{2A}{3} ki te -\frac{2A}{3}. Ka whakakore atu ngā kupu \frac{2A}{3} me -\frac{2A}{3}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{7}{15}B=400-\frac{920}{3}
Tāpiri B ki te -\frac{8B}{15}.
\frac{7}{15}B=\frac{280}{3}
Tāpiri 400 ki te -\frac{920}{3}.
B=200
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{15}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
A+\frac{4}{5}\times 200=460
Whakaurua te 200 mō B ki A+\frac{4}{5}B=460. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A+160=460
Whakareatia \frac{4}{5} ki te 200.
A=300
Me tango 160 mai i ngā taha e rua o te whārite.
A=300,B=200
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}