Whakaoti mō p, a, b
p=2.5
a=6
b=0.2
Tohaina
Kua tāruatia ki te papatopenga
5\times 2=4p
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 140, arā, te tauraro pātahi he tino iti rawa te kitea o 28,35.
10=4p
Whakareatia te 5 ki te 2, ka 10.
4p=10
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
p=\frac{10}{4}
Whakawehea ngā taha e rua ki te 4.
p=\frac{5}{2}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
10\times \frac{0.9}{1.5}=a
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 10.
10\times \frac{9}{15}=a
Whakarohaina te \frac{0.9}{1.5} mā te whakarea i te taurunga me te tauraro ki te 10.
10\times \frac{3}{5}=a
Whakahekea te hautanga \frac{9}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
6=a
Whakareatia te 10 ki te \frac{3}{5}, ka 6.
a=6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{36}{90}=\frac{b}{0.5}
Whakaarohia te whārite tuatoru. Whakarohaina te \frac{3.6}{9} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{2}{5}=\frac{b}{0.5}
Whakahekea te hautanga \frac{36}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
\frac{b}{0.5}=\frac{2}{5}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b=\frac{2}{5}\times 0.5
Me whakarea ngā taha e rua ki te 0.5.
b=\frac{1}{5}
Whakareatia te \frac{2}{5} ki te 0.5, ka \frac{1}{5}.
p=\frac{5}{2} a=6 b=\frac{1}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}