\left. \begin{array} { l } { \frac { 2 ^ { 2 } + 3 ^ { 5 } } { 3 ^ { 2 } } } \\ { \frac { 1 } { 2 ^ { - 3 } } - \frac { 1 } { 2 ^ { - 3 } } } \\ { \frac { 1 ^ { - 3 } } { 2 ^ { 9 } } - \frac { 1 ^ { - 3 } } { 2 } } \\ { } \end{array} \right.
Kōmaka
-\frac{255}{512},0,0,\frac{247}{9}
Aromātai
\frac{247}{9},\ 0,\ -\frac{255}{512},\ 0
Tohaina
Kua tāruatia ki te papatopenga
sort(\frac{4+3^{5}}{3^{2}},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
sort(\frac{4+243}{3^{2}},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 3 mā te pū o 5, kia riro ko 243.
sort(\frac{247}{3^{2}},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tāpirihia te 4 ki te 243, ka 247.
sort(\frac{247}{9},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
sort(\frac{247}{9},\frac{1}{\frac{1}{8}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o -3, kia riro ko \frac{1}{8}.
sort(\frac{247}{9},1\times 8-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakawehe 1 ki te \frac{1}{8} mā te whakarea 1 ki te tau huripoki o \frac{1}{8}.
sort(\frac{247}{9},8-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakareatia te 1 ki te 8, ka 8.
sort(\frac{247}{9},8-\frac{1}{\frac{1}{8}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o -3, kia riro ko \frac{1}{8}.
sort(\frac{247}{9},8-1\times 8,\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakawehe 1 ki te \frac{1}{8} mā te whakarea 1 ki te tau huripoki o \frac{1}{8}.
sort(\frac{247}{9},8-8,\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakareatia te 1 ki te 8, ka 8.
sort(\frac{247}{9},0,\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tangohia te 8 i te 8, ka 0.
sort(\frac{247}{9},0,\frac{1}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
sort(\frac{247}{9},0,\frac{1}{512}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o 9, kia riro ko 512.
sort(\frac{247}{9},0,\frac{1}{512}-\frac{1}{2},0)
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
sort(\frac{247}{9},0,-\frac{255}{512},0)
Tangohia te \frac{1}{2} i te \frac{1}{512}, ka -\frac{255}{512}.
\frac{247}{9},0,-\frac{255}{512},0
Tahuritia ngā tau ā-ira i te rārangi \frac{247}{9},0,-\frac{255}{512},0 ki ngā hautanga.
\frac{126464}{4608},0,-\frac{2295}{4608},0
Ko te tauraro noa iti rawa atu o ngā tau i te rārangi \frac{247}{9},0,-\frac{255}{512},0 ko 4608. Tahuritia ngā tau i te rārangi ki te hautanga me te tauraro 4608.
\frac{126464}{4608}
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga \frac{126464}{4608} kotahi.
0,\frac{126464}{4608}
Me kōkuhu te 0 ki te tauwāhi tika i te rārangi hōu.
-\frac{2295}{4608},0,\frac{126464}{4608}
Me kōkuhu te -\frac{2295}{4608} ki te tauwāhi tika i te rārangi hōu.
-\frac{2295}{4608},0,0,\frac{126464}{4608}
Me kōkuhu te 0 ki te tauwāhi tika i te rārangi hōu.
-\frac{255}{512},0,0,\frac{247}{9}
Whakakapia ngā hautanga i whiwhi ki ngā uara tīmata.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}