Tīpoka ki ngā ihirangi matua
Kōmaka
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

https://math.stackexchange.com/questions/2541322/how-to-prove-this-equation-with-bessel-function-and-laguerre-function

Tohaina

sort(\frac{4+3^{5}}{3^{2}},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
sort(\frac{4+243}{3^{2}},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 3 mā te pū o 5, kia riro ko 243.
sort(\frac{247}{3^{2}},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tāpirihia te 4 ki te 243, ka 247.
sort(\frac{247}{9},\frac{1}{2^{-3}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
sort(\frac{247}{9},\frac{1}{\frac{1}{8}}-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o -3, kia riro ko \frac{1}{8}.
sort(\frac{247}{9},1\times 8-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakawehe 1 ki te \frac{1}{8} mā te whakarea 1 ki te tau huripoki o \frac{1}{8}.
sort(\frac{247}{9},8-\frac{1}{2^{-3}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakareatia te 1 ki te 8, ka 8.
sort(\frac{247}{9},8-\frac{1}{\frac{1}{8}},\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o -3, kia riro ko \frac{1}{8}.
sort(\frac{247}{9},8-1\times 8,\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakawehe 1 ki te \frac{1}{8} mā te whakarea 1 ki te tau huripoki o \frac{1}{8}.
sort(\frac{247}{9},8-8,\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Whakareatia te 1 ki te 8, ka 8.
sort(\frac{247}{9},0,\frac{1^{-3}}{2^{9}}-\frac{1^{-3}}{2},0)
Tangohia te 8 i te 8, ka 0.
sort(\frac{247}{9},0,\frac{1}{2^{9}}-\frac{1^{-3}}{2},0)
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
sort(\frac{247}{9},0,\frac{1}{512}-\frac{1^{-3}}{2},0)
Tātaihia te 2 mā te pū o 9, kia riro ko 512.
sort(\frac{247}{9},0,\frac{1}{512}-\frac{1}{2},0)
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
sort(\frac{247}{9},0,-\frac{255}{512},0)
Tangohia te \frac{1}{2} i te \frac{1}{512}, ka -\frac{255}{512}.
\frac{247}{9},0,-\frac{255}{512},0
Tahuritia ngā tau ā-ira i te rārangi \frac{247}{9},0,-\frac{255}{512},0 ki ngā hautanga.
\frac{126464}{4608},0,-\frac{2295}{4608},0
Ko te tauraro noa iti rawa atu o ngā tau i te rārangi \frac{247}{9},0,-\frac{255}{512},0 ko 4608. Tahuritia ngā tau i te rārangi ki te hautanga me te tauraro 4608.
\frac{126464}{4608}
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga \frac{126464}{4608} kotahi.
0,\frac{126464}{4608}
Me kōkuhu te 0 ki te tauwāhi tika i te rārangi hōu.
-\frac{2295}{4608},0,\frac{126464}{4608}
Me kōkuhu te -\frac{2295}{4608} ki te tauwāhi tika i te rārangi hōu.
-\frac{2295}{4608},0,0,\frac{126464}{4608}
Me kōkuhu te 0 ki te tauwāhi tika i te rārangi hōu.
-\frac{255}{512},0,0,\frac{247}{9}
Whakakapia ngā hautanga i whiwhi ki ngā uara tīmata.