Whakaoti mō x, y
y = -\frac{24}{7} = -3\frac{3}{7} \approx -3.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
3=4\left(x+1\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,3.
3=4x+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
4x+4=3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4x=3-4
Tangohia te 4 mai i ngā taha e rua.
4x=-1
Tangohia te 4 i te 3, ka -1.
x=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
y=\frac{1}{-\frac{1}{4}}+\frac{1}{-\frac{1}{4}+2}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=1\left(-4\right)+\frac{1}{-\frac{1}{4}+2}
Whakawehe 1 ki te -\frac{1}{4} mā te whakarea 1 ki te tau huripoki o -\frac{1}{4}.
y=-4+\frac{1}{-\frac{1}{4}+2}
Whakareatia te 1 ki te -4, ka -4.
y=-4+\frac{1}{\frac{7}{4}}
Tāpirihia te -\frac{1}{4} ki te 2, ka \frac{7}{4}.
y=-4+1\times \frac{4}{7}
Whakawehe 1 ki te \frac{7}{4} mā te whakarea 1 ki te tau huripoki o \frac{7}{4}.
y=-4+\frac{4}{7}
Whakareatia te 1 ki te \frac{4}{7}, ka \frac{4}{7}.
y=-\frac{24}{7}
Tāpirihia te -4 ki te \frac{4}{7}, ka -\frac{24}{7}.
x=-\frac{1}{4} y=-\frac{24}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}