Aromātai
\frac{9}{10}=0.9
Tauwehe
\frac{3 ^ {2}}{2 \cdot 5} = 0.9
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{20}+\frac{2}{20}+\frac{2}{10}+\frac{1}{4}+\frac{3}{10}
Ko te maha noa iti rawa atu o 20 me 10 ko 20. Me tahuri \frac{1}{20} me \frac{1}{10} ki te hautau me te tautūnga 20.
\frac{1+2}{20}+\frac{2}{10}+\frac{1}{4}+\frac{3}{10}
Tā te mea he rite te tauraro o \frac{1}{20} me \frac{2}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{20}+\frac{2}{10}+\frac{1}{4}+\frac{3}{10}
Tāpirihia te 1 ki te 2, ka 3.
\frac{3}{20}+\frac{1}{5}+\frac{1}{4}+\frac{3}{10}
Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{20}+\frac{4}{20}+\frac{1}{4}+\frac{3}{10}
Ko te maha noa iti rawa atu o 20 me 5 ko 20. Me tahuri \frac{3}{20} me \frac{1}{5} ki te hautau me te tautūnga 20.
\frac{3+4}{20}+\frac{1}{4}+\frac{3}{10}
Tā te mea he rite te tauraro o \frac{3}{20} me \frac{4}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{20}+\frac{1}{4}+\frac{3}{10}
Tāpirihia te 3 ki te 4, ka 7.
\frac{7}{20}+\frac{5}{20}+\frac{3}{10}
Ko te maha noa iti rawa atu o 20 me 4 ko 20. Me tahuri \frac{7}{20} me \frac{1}{4} ki te hautau me te tautūnga 20.
\frac{7+5}{20}+\frac{3}{10}
Tā te mea he rite te tauraro o \frac{7}{20} me \frac{5}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{20}+\frac{3}{10}
Tāpirihia te 7 ki te 5, ka 12.
\frac{3}{5}+\frac{3}{10}
Whakahekea te hautanga \frac{12}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{6}{10}+\frac{3}{10}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{3}{5} me \frac{3}{10} ki te hautau me te tautūnga 10.
\frac{6+3}{10}
Tā te mea he rite te tauraro o \frac{6}{10} me \frac{3}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{10}
Tāpirihia te 6 ki te 3, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}