Whakaoti mō x, y
x=-68
y=-40
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x-\frac{4}{5}y=-2,\frac{1}{6}x-\frac{1}{3}y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{2}x-\frac{4}{5}y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{2}x=\frac{4}{5}y-2
Me tāpiri \frac{4y}{5} ki ngā taha e rua o te whārite.
x=2\left(\frac{4}{5}y-2\right)
Me whakarea ngā taha e rua ki te 2.
x=\frac{8}{5}y-4
Whakareatia 2 ki te \frac{4y}{5}-2.
\frac{1}{6}\left(\frac{8}{5}y-4\right)-\frac{1}{3}y=2
Whakakapia te \frac{8y}{5}-4 mō te x ki tērā atu whārite, \frac{1}{6}x-\frac{1}{3}y=2.
\frac{4}{15}y-\frac{2}{3}-\frac{1}{3}y=2
Whakareatia \frac{1}{6} ki te \frac{8y}{5}-4.
-\frac{1}{15}y-\frac{2}{3}=2
Tāpiri \frac{4y}{15} ki te -\frac{y}{3}.
-\frac{1}{15}y=\frac{8}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
y=-40
Me whakarea ngā taha e rua ki te -15.
x=\frac{8}{5}\left(-40\right)-4
Whakaurua te -40 mō y ki x=\frac{8}{5}y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-64-4
Whakareatia \frac{8}{5} ki te -40.
x=-68
Tāpiri -4 ki te -64.
x=-68,y=-40
Kua oti te pūnaha te whakatau.
\frac{1}{2}x-\frac{4}{5}y=-2,\frac{1}{6}x-\frac{1}{3}y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{3}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}&-\frac{-\frac{4}{5}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}\\-\frac{\frac{1}{6}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}&\frac{\frac{1}{2}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10&-24\\5&-15\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\left(-2\right)-24\times 2\\5\left(-2\right)-15\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-68\\-40\end{matrix}\right)
Mahia ngā tātaitanga.
x=-68,y=-40
Tangohia ngā huānga poukapa x me y.
\frac{1}{2}x-\frac{4}{5}y=-2,\frac{1}{6}x-\frac{1}{3}y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{6}\times \frac{1}{2}x+\frac{1}{6}\left(-\frac{4}{5}\right)y=\frac{1}{6}\left(-2\right),\frac{1}{2}\times \frac{1}{6}x+\frac{1}{2}\left(-\frac{1}{3}\right)y=\frac{1}{2}\times 2
Kia ōrite ai a \frac{x}{2} me \frac{x}{6}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{6} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{2}.
\frac{1}{12}x-\frac{2}{15}y=-\frac{1}{3},\frac{1}{12}x-\frac{1}{6}y=1
Whakarūnātia.
\frac{1}{12}x-\frac{1}{12}x-\frac{2}{15}y+\frac{1}{6}y=-\frac{1}{3}-1
Me tango \frac{1}{12}x-\frac{1}{6}y=1 mai i \frac{1}{12}x-\frac{2}{15}y=-\frac{1}{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{2}{15}y+\frac{1}{6}y=-\frac{1}{3}-1
Tāpiri \frac{x}{12} ki te -\frac{x}{12}. Ka whakakore atu ngā kupu \frac{x}{12} me -\frac{x}{12}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{30}y=-\frac{1}{3}-1
Tāpiri -\frac{2y}{15} ki te \frac{y}{6}.
\frac{1}{30}y=-\frac{4}{3}
Tāpiri -\frac{1}{3} ki te -1.
y=-40
Me whakarea ngā taha e rua ki te 30.
\frac{1}{6}x-\frac{1}{3}\left(-40\right)=2
Whakaurua te -40 mō y ki \frac{1}{6}x-\frac{1}{3}y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{6}x+\frac{40}{3}=2
Whakareatia -\frac{1}{3} ki te -40.
\frac{1}{6}x=-\frac{34}{3}
Me tango \frac{40}{3} mai i ngā taha e rua o te whārite.
x=-68
Me whakarea ngā taha e rua ki te 6.
x=-68,y=-40
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}