Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}x-\frac{2}{3}y-5=0,x+3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{2}x-\frac{2}{3}y-5=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{2}x-\frac{2}{3}y=5
Me tāpiri 5 ki ngā taha e rua o te whārite.
\frac{1}{2}x=\frac{2}{3}y+5
Me tāpiri \frac{2y}{3} ki ngā taha e rua o te whārite.
x=2\left(\frac{2}{3}y+5\right)
Me whakarea ngā taha e rua ki te 2.
x=\frac{4}{3}y+10
Whakareatia 2 ki te \frac{2y}{3}+5.
\frac{4}{3}y+10+3y=6
Whakakapia te \frac{4y}{3}+10 mō te x ki tērā atu whārite, x+3y=6.
\frac{13}{3}y+10=6
Tāpiri \frac{4y}{3} ki te 3y.
\frac{13}{3}y=-4
Me tango 10 mai i ngā taha e rua o te whārite.
y=-\frac{12}{13}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{3}\left(-\frac{12}{13}\right)+10
Whakaurua te -\frac{12}{13} mō y ki x=\frac{4}{3}y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{16}{13}+10
Whakareatia \frac{4}{3} ki te -\frac{12}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{114}{13}
Tāpiri 10 ki te -\frac{16}{13}.
x=\frac{114}{13},y=-\frac{12}{13}
Kua oti te pūnaha te whakatau.
\frac{1}{2}x-\frac{2}{3}y-5=0,x+3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{2}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}&-\frac{-\frac{2}{3}}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}\\-\frac{1}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}&\frac{\frac{1}{2}}{\frac{1}{2}\times 3-\left(-\frac{2}{3}\right)}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{13}&\frac{4}{13}\\-\frac{6}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{13}\times 5+\frac{4}{13}\times 6\\-\frac{6}{13}\times 5+\frac{3}{13}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{114}{13}\\-\frac{12}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{114}{13},y=-\frac{12}{13}
Tangohia ngā huānga poukapa x me y.
\frac{1}{2}x-\frac{2}{3}y-5=0,x+3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}x-\frac{2}{3}y-5=0,\frac{1}{2}x+\frac{1}{2}\times 3y=\frac{1}{2}\times 6
Kia ōrite ai a \frac{x}{2} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{2}.
\frac{1}{2}x-\frac{2}{3}y-5=0,\frac{1}{2}x+\frac{3}{2}y=3
Whakarūnātia.
\frac{1}{2}x-\frac{1}{2}x-\frac{2}{3}y-\frac{3}{2}y-5=-3
Me tango \frac{1}{2}x+\frac{3}{2}y=3 mai i \frac{1}{2}x-\frac{2}{3}y-5=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{2}{3}y-\frac{3}{2}y-5=-3
Tāpiri \frac{x}{2} ki te -\frac{x}{2}. Ka whakakore atu ngā kupu \frac{x}{2} me -\frac{x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{13}{6}y-5=-3
Tāpiri -\frac{2y}{3} ki te -\frac{3y}{2}.
-\frac{13}{6}y=2
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=-\frac{12}{13}
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x+3\left(-\frac{12}{13}\right)=6
Whakaurua te -\frac{12}{13} mō y ki x+3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{36}{13}=6
Whakareatia 3 ki te -\frac{12}{13}.
x=\frac{114}{13}
Me tāpiri \frac{36}{13} ki ngā taha e rua o te whārite.
x=\frac{114}{13},y=-\frac{12}{13}
Kua oti te pūnaha te whakatau.