Whakaoti mō x, y
x=1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-\left(1+2y\right)=4\left(2x-5y\right)-21
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,12,3,4.
6x-1-2y=4\left(2x-5y\right)-21
Hei kimi i te tauaro o 1+2y, kimihia te tauaro o ia taurangi.
6x-1-2y=8x-20y-21
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-5y.
6x-1-2y-8x=-20y-21
Tangohia te 8x mai i ngā taha e rua.
-2x-1-2y=-20y-21
Pahekotia te 6x me -8x, ka -2x.
-2x-1-2y+20y=-21
Me tāpiri te 20y ki ngā taha e rua.
-2x-1+18y=-21
Pahekotia te -2y me 20y, ka 18y.
-2x+18y=-21+1
Me tāpiri te 1 ki ngā taha e rua.
-2x+18y=-20
Tāpirihia te -21 ki te 1, ka -20.
-2x+18y=-20,\frac{1}{5}x+\frac{2}{7}y=-\frac{3}{35}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+18y=-20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-18y-20
Me tango 18y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-18y-20\right)
Whakawehea ngā taha e rua ki te -2.
x=9y+10
Whakareatia -\frac{1}{2} ki te -18y-20.
\frac{1}{5}\left(9y+10\right)+\frac{2}{7}y=-\frac{3}{35}
Whakakapia te 9y+10 mō te x ki tērā atu whārite, \frac{1}{5}x+\frac{2}{7}y=-\frac{3}{35}.
\frac{9}{5}y+2+\frac{2}{7}y=-\frac{3}{35}
Whakareatia \frac{1}{5} ki te 9y+10.
\frac{73}{35}y+2=-\frac{3}{35}
Tāpiri \frac{9y}{5} ki te \frac{2y}{7}.
\frac{73}{35}y=-\frac{73}{35}
Me tango 2 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{73}{35}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=9\left(-1\right)+10
Whakaurua te -1 mō y ki x=9y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-9+10
Whakareatia 9 ki te -1.
x=1
Tāpiri 10 ki te -9.
x=1,y=-1
Kua oti te pūnaha te whakatau.
6x-\left(1+2y\right)=4\left(2x-5y\right)-21
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,12,3,4.
6x-1-2y=4\left(2x-5y\right)-21
Hei kimi i te tauaro o 1+2y, kimihia te tauaro o ia taurangi.
6x-1-2y=8x-20y-21
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-5y.
6x-1-2y-8x=-20y-21
Tangohia te 8x mai i ngā taha e rua.
-2x-1-2y=-20y-21
Pahekotia te 6x me -8x, ka -2x.
-2x-1-2y+20y=-21
Me tāpiri te 20y ki ngā taha e rua.
-2x-1+18y=-21
Pahekotia te -2y me 20y, ka 18y.
-2x+18y=-21+1
Me tāpiri te 1 ki ngā taha e rua.
-2x+18y=-20
Tāpirihia te -21 ki te 1, ka -20.
-2x+18y=-20,\frac{1}{5}x+\frac{2}{7}y=-\frac{3}{35}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20\\-\frac{3}{35}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right))\left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right))\left(\begin{matrix}-20\\-\frac{3}{35}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right))\left(\begin{matrix}-20\\-\frac{3}{35}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&18\\\frac{1}{5}&\frac{2}{7}\end{matrix}\right))\left(\begin{matrix}-20\\-\frac{3}{35}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{7}}{-2\times \frac{2}{7}-18\times \frac{1}{5}}&-\frac{18}{-2\times \frac{2}{7}-18\times \frac{1}{5}}\\-\frac{\frac{1}{5}}{-2\times \frac{2}{7}-18\times \frac{1}{5}}&-\frac{2}{-2\times \frac{2}{7}-18\times \frac{1}{5}}\end{matrix}\right)\left(\begin{matrix}-20\\-\frac{3}{35}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{73}&\frac{315}{73}\\\frac{7}{146}&\frac{35}{73}\end{matrix}\right)\left(\begin{matrix}-20\\-\frac{3}{35}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{73}\left(-20\right)+\frac{315}{73}\left(-\frac{3}{35}\right)\\\frac{7}{146}\left(-20\right)+\frac{35}{73}\left(-\frac{3}{35}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
6x-\left(1+2y\right)=4\left(2x-5y\right)-21
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,12,3,4.
6x-1-2y=4\left(2x-5y\right)-21
Hei kimi i te tauaro o 1+2y, kimihia te tauaro o ia taurangi.
6x-1-2y=8x-20y-21
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-5y.
6x-1-2y-8x=-20y-21
Tangohia te 8x mai i ngā taha e rua.
-2x-1-2y=-20y-21
Pahekotia te 6x me -8x, ka -2x.
-2x-1-2y+20y=-21
Me tāpiri te 20y ki ngā taha e rua.
-2x-1+18y=-21
Pahekotia te -2y me 20y, ka 18y.
-2x+18y=-21+1
Me tāpiri te 1 ki ngā taha e rua.
-2x+18y=-20
Tāpirihia te -21 ki te 1, ka -20.
-2x+18y=-20,\frac{1}{5}x+\frac{2}{7}y=-\frac{3}{35}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{5}\left(-2\right)x+\frac{1}{5}\times 18y=\frac{1}{5}\left(-20\right),-2\times \frac{1}{5}x-2\times \frac{2}{7}y=-2\left(-\frac{3}{35}\right)
Kia ōrite ai a -2x me \frac{x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-\frac{2}{5}x+\frac{18}{5}y=-4,-\frac{2}{5}x-\frac{4}{7}y=\frac{6}{35}
Whakarūnātia.
-\frac{2}{5}x+\frac{2}{5}x+\frac{18}{5}y+\frac{4}{7}y=-4-\frac{6}{35}
Me tango -\frac{2}{5}x-\frac{4}{7}y=\frac{6}{35} mai i -\frac{2}{5}x+\frac{18}{5}y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{18}{5}y+\frac{4}{7}y=-4-\frac{6}{35}
Tāpiri -\frac{2x}{5} ki te \frac{2x}{5}. Ka whakakore atu ngā kupu -\frac{2x}{5} me \frac{2x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{146}{35}y=-4-\frac{6}{35}
Tāpiri \frac{18y}{5} ki te \frac{4y}{7}.
\frac{146}{35}y=-\frac{146}{35}
Tāpiri -4 ki te -\frac{6}{35}.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{146}{35}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{5}x+\frac{2}{7}\left(-1\right)=-\frac{3}{35}
Whakaurua te -1 mō y ki \frac{1}{5}x+\frac{2}{7}y=-\frac{3}{35}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{5}x-\frac{2}{7}=-\frac{3}{35}
Whakareatia \frac{2}{7} ki te -1.
\frac{1}{5}x=\frac{1}{5}
Me tāpiri \frac{2}{7} ki ngā taha e rua o te whārite.
x=1
Me whakarea ngā taha e rua ki te 5.
x=1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}