\left. \begin{array} { l } { \frac { 1 } { 12 } } \\ { \frac { 1 } { 15 } } \\ { \frac { 1 } { 18 } } \\ { \frac { 1 } { 9 } } \end{array} \right.
Kōmaka
\frac{1}{18},\frac{1}{15},\frac{1}{12},\frac{1}{9}
Aromātai
\frac{1}{12},\ \frac{1}{15},\ \frac{1}{18},\ \frac{1}{9}
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{180},\frac{12}{180},\frac{10}{180},\frac{20}{180}
Ko te tauraro noa iti rawa atu o ngā tau i te rārangi \frac{1}{12},\frac{1}{15},\frac{1}{18},\frac{1}{9} ko 180. Tahuritia ngā tau i te rārangi ki te hautanga me te tauraro 180.
\frac{15}{180}
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga \frac{15}{180} kotahi.
\frac{12}{180},\frac{15}{180}
Me kōkuhu te \frac{12}{180} ki te tauwāhi tika i te rārangi hōu.
\frac{10}{180},\frac{12}{180},\frac{15}{180}
Me kōkuhu te \frac{10}{180} ki te tauwāhi tika i te rārangi hōu.
\frac{10}{180},\frac{12}{180},\frac{15}{180},\frac{20}{180}
Me kōkuhu te \frac{20}{180} ki te tauwāhi tika i te rārangi hōu.
\frac{1}{18},\frac{1}{15},\frac{1}{12},\frac{1}{9}
Whakakapia ngā hautanga i whiwhi ki ngā uara tīmata.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}