Aromātai
\frac{52}{15}\approx 3.466666667
Tauwehe
\frac{2 ^ {2} \cdot 13}{3 \cdot 5} = 3\frac{7}{15} = 3.466666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{0+7+22+30+24+15+6}{2+7+11+6+3+1}
Whakareatia te 0 ki te 2, ka 0. Whakareatia te 1 ki te 7, ka 7. Whakareatia te 2 ki te 11, ka 22. Whakareatia te 3 ki te 10, ka 30. Whakareatia te 4 ki te 6, ka 24. Whakareatia te 5 ki te 3, ka 15. Whakareatia te 6 ki te 1, ka 6.
\frac{7+22+30+24+15+6}{2+7+11+6+3+1}
Tāpirihia te 0 ki te 7, ka 7.
\frac{29+30+24+15+6}{2+7+11+6+3+1}
Tāpirihia te 7 ki te 22, ka 29.
\frac{59+24+15+6}{2+7+11+6+3+1}
Tāpirihia te 29 ki te 30, ka 59.
\frac{83+15+6}{2+7+11+6+3+1}
Tāpirihia te 59 ki te 24, ka 83.
\frac{98+6}{2+7+11+6+3+1}
Tāpirihia te 83 ki te 15, ka 98.
\frac{104}{2+7+11+6+3+1}
Tāpirihia te 98 ki te 6, ka 104.
\frac{104}{9+11+6+3+1}
Tāpirihia te 2 ki te 7, ka 9.
\frac{104}{20+6+3+1}
Tāpirihia te 9 ki te 11, ka 20.
\frac{104}{26+3+1}
Tāpirihia te 20 ki te 6, ka 26.
\frac{104}{29+1}
Tāpirihia te 26 ki te 3, ka 29.
\frac{104}{30}
Tāpirihia te 29 ki te 1, ka 30.
\frac{52}{15}
Whakahekea te hautanga \frac{104}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}