Whakaoti mō x, y, z
x=\frac{a+6}{2}
y=\frac{a-6}{2}
z=a
Tohaina
Kua tāruatia ki te papatopenga
z=x+y x-y=6 a=z
Me raupapa anō ngā whārite.
a=x+y
Whakakapia te x+y mō te z i te whārite a=z.
y=x-6 x=a-y
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=a-\left(x-6\right)
Whakakapia te x-6 mō te y i te whārite x=a-y.
x=3+\frac{1}{2}a
Me whakaoti te x=a-\left(x-6\right) mō x.
y=3+\frac{1}{2}a-6
Whakakapia te 3+\frac{1}{2}a mō te x i te whārite y=x-6.
y=-3+\frac{1}{2}a
Tātaitia te y i te y=3+\frac{1}{2}a-6.
z=3+\frac{1}{2}a-3+\frac{1}{2}a
Whakakapia te -3+\frac{1}{2}a mō te y me te 3+\frac{1}{2}a mō x i te whārite z=x+y.
z=a
Tātaitia te z i te z=3+\frac{1}{2}a-3+\frac{1}{2}a.
x=3+\frac{1}{2}a y=-3+\frac{1}{2}a z=a
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}