Whakaoti mō x, y, z
x=\frac{a-2}{3}
y=\frac{a+1}{3}
z=a
Tohaina
Kua tāruatia ki te papatopenga
z=x+2y x-y=-1 a=z
Me raupapa anō ngā whārite.
a=x+2y
Whakakapia te x+2y mō te z i te whārite a=z.
y=x+1 x=a-2y
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=a-2\left(x+1\right)
Whakakapia te x+1 mō te y i te whārite x=a-2y.
x=-\frac{2}{3}+\frac{1}{3}a
Me whakaoti te x=a-2\left(x+1\right) mō x.
y=-\frac{2}{3}+\frac{1}{3}a+1
Whakakapia te -\frac{2}{3}+\frac{1}{3}a mō te x i te whārite y=x+1.
y=\frac{1}{3}+\frac{1}{3}a
Tātaitia te y i te y=-\frac{2}{3}+\frac{1}{3}a+1.
z=-\frac{2}{3}+\frac{1}{3}a+2\left(\frac{1}{3}+\frac{1}{3}a\right)
Whakakapia te \frac{1}{3}+\frac{1}{3}a mō te y me te -\frac{2}{3}+\frac{1}{3}a mō x i te whārite z=x+2y.
z=a
Tātaitia te z i te z=-\frac{2}{3}+\frac{1}{3}a+2\left(\frac{1}{3}+\frac{1}{3}a\right).
x=-\frac{2}{3}+\frac{1}{3}a y=\frac{1}{3}+\frac{1}{3}a z=a
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}