Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z=x+2y x-y=-1 a=z
Me raupapa anō ngā whārite.
a=x+2y
Whakakapia te x+2y mō te z i te whārite a=z.
y=x+1 x=a-2y
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=a-2\left(x+1\right)
Whakakapia te x+1 mō te y i te whārite x=a-2y.
x=-\frac{2}{3}+\frac{1}{3}a
Me whakaoti te x=a-2\left(x+1\right) mō x.
y=-\frac{2}{3}+\frac{1}{3}a+1
Whakakapia te -\frac{2}{3}+\frac{1}{3}a mō te x i te whārite y=x+1.
y=\frac{1}{3}+\frac{1}{3}a
Tātaitia te y i te y=-\frac{2}{3}+\frac{1}{3}a+1.
z=-\frac{2}{3}+\frac{1}{3}a+2\left(\frac{1}{3}+\frac{1}{3}a\right)
Whakakapia te \frac{1}{3}+\frac{1}{3}a mō te y me te -\frac{2}{3}+\frac{1}{3}a mō x i te whārite z=x+2y.
z=a
Tātaitia te z i te z=-\frac{2}{3}+\frac{1}{3}a+2\left(\frac{1}{3}+\frac{1}{3}a\right).
x=-\frac{2}{3}+\frac{1}{3}a y=\frac{1}{3}+\frac{1}{3}a z=a
Kua oti te pūnaha te whakatau.