\left. \begin{array} { l } { x = 6 + 1 }\\ { y = -2 + {(-1)} }\\ { 0 = -4 + 1 - 2 t }\\ { u = 5 t }\\ { v = 5 t }\\ { w = u }\\ { z = v }\\ { a = w }\\ { b = z }\\ { \text{Solve for } c,d \text{ where} } \\ { c = a }\\ { d = b } \end{array} \right.
Whakaoti mō x, y, t, u, v, w, z, a, b, c, d
c = -\frac{15}{2} = -7\frac{1}{2} = -7.5
d = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Tohaina
Kua tāruatia ki te papatopenga
x=7
Whakaarohia te whārite tuatahi. Tāpirihia te 6 ki te 1, ka 7.
y=-3
Whakaarohia te whārite tuarua. Tangohia te 1 i te -2, ka -3.
0=-3-2t
Whakaarohia te whārite tuatoru. Tāpirihia te -4 ki te 1, ka -3.
-3-2t=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2t=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
t=-\frac{3}{2}
Whakawehea ngā taha e rua ki te -2.
u=5\left(-\frac{3}{2}\right)
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=-\frac{15}{2}
Whakareatia te 5 ki te -\frac{3}{2}, ka -\frac{15}{2}.
v=5\left(-\frac{3}{2}\right)
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=-\frac{15}{2}
Whakareatia te 5 ki te -\frac{3}{2}, ka -\frac{15}{2}.
w=-\frac{15}{2}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=-\frac{15}{2}
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=-\frac{15}{2}
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=-\frac{15}{2}
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
c=-\frac{15}{2}
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
d=-\frac{15}{2}
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=7 y=-3 t=-\frac{3}{2} u=-\frac{15}{2} v=-\frac{15}{2} w=-\frac{15}{2} z=-\frac{15}{2} a=-\frac{15}{2} b=-\frac{15}{2} c=-\frac{15}{2} d=-\frac{15}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}