Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z, a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
Whakaarohia te whārite tuatahi. Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-1.
x=\frac{\sqrt{2}-1}{\left(\sqrt{2}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\sqrt{2}-1}{2-1}
Pūrua \sqrt{2}. Pūrua 1.
x=\frac{\sqrt{2}-1}{1}
Tangohia te 1 i te 2, ka 1.
x=\sqrt{2}-1
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
y=\sqrt{2}-1+1
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\sqrt{2}
Tāpirihia te -1 ki te 1, ka 0.
z=\sqrt{2}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=\sqrt{2}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=\sqrt{2}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\sqrt{2}-1 y=\sqrt{2} z=\sqrt{2} a=\sqrt{2} b=\sqrt{2}
Kua oti te pūnaha te whakatau.