Whakaoti mō x, y, z, a
a=62
Tohaina
Kua tāruatia ki te papatopenga
y=\left(4-\sqrt{15}\right)^{2}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{15}\right)^{2}.
y=16-8\sqrt{15}+15+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Ko te pūrua o \sqrt{15} ko 15.
y=31-8\sqrt{15}+\frac{1}{\left(4-\sqrt{15}\right)^{2}}
Tāpirihia te 16 ki te 15, ka 31.
y=31-8\sqrt{15}+\frac{1}{16-8\sqrt{15}+\left(\sqrt{15}\right)^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{15}\right)^{2}.
y=31-8\sqrt{15}+\frac{1}{16-8\sqrt{15}+15}
Ko te pūrua o \sqrt{15} ko 15.
y=31-8\sqrt{15}+\frac{1}{31-8\sqrt{15}}
Tāpirihia te 16 ki te 15, ka 31.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{\left(31-8\sqrt{15}\right)\left(31+8\sqrt{15}\right)}
Whakangāwaritia te tauraro o \frac{1}{31-8\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te 31+8\sqrt{15}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{31^{2}-\left(-8\sqrt{15}\right)^{2}}
Whakaarohia te \left(31-8\sqrt{15}\right)\left(31+8\sqrt{15}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-\left(-8\sqrt{15}\right)^{2}}
Tātaihia te 31 mā te pū o 2, kia riro ko 961.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-\left(-8\right)^{2}\left(\sqrt{15}\right)^{2}}
Whakarohaina te \left(-8\sqrt{15}\right)^{2}.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-64\left(\sqrt{15}\right)^{2}}
Tātaihia te -8 mā te pū o 2, kia riro ko 64.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-64\times 15}
Ko te pūrua o \sqrt{15} ko 15.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{961-960}
Whakareatia te 64 ki te 15, ka 960.
y=31-8\sqrt{15}+\frac{31+8\sqrt{15}}{1}
Tangohia te 960 i te 961, ka 1.
y=31-8\sqrt{15}+31+8\sqrt{15}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
y=62-8\sqrt{15}+8\sqrt{15}
Tāpirihia te 31 ki te 31, ka 62.
y=62
Pahekotia te -8\sqrt{15} me 8\sqrt{15}, ka 0.
z=62
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=62
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=4-\sqrt{15} y=62 z=62 a=62
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}