\left. \begin{array} { l } { p = \frac{5}{6} }\\ { q = {(\frac{7 \cdot {(2)} + 1}{2})} - p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { y = x }\\ { \text{Solve for } z \text{ where} } \\ { z = y } \end{array} \right.
Whakaoti mō p, q, r, s, t, u, v, w, x, y, z
z = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
Tohaina
Kua tāruatia ki te papatopenga
q=\frac{7\times 2+1}{2}-\frac{5}{6}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
q=\frac{14+1}{2}-\frac{5}{6}
Whakareatia te 7 ki te 2, ka 14.
q=\frac{15}{2}-\frac{5}{6}
Tāpirihia te 14 ki te 1, ka 15.
q=\frac{20}{3}
Tangohia te \frac{5}{6} i te \frac{15}{2}, ka \frac{20}{3}.
r=\frac{20}{3}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=\frac{20}{3}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=\frac{20}{3}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=\frac{20}{3}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=\frac{20}{3}
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
w=\frac{20}{3}
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\frac{20}{3}
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\frac{20}{3}
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=\frac{20}{3}
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=\frac{5}{6} q=\frac{20}{3} r=\frac{20}{3} s=\frac{20}{3} t=\frac{20}{3} u=\frac{20}{3} v=\frac{20}{3} w=\frac{20}{3} x=\frac{20}{3} y=\frac{20}{3} z=\frac{20}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}