\left. \begin{array} { l } { m = 5 }\\ { n = m \cdot {(\frac{2 \cdot {(3)} + 2}{3})} }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { \text{Solve for } w \text{ where} } \\ { w = v } \end{array} \right.
Whakaoti mō m, n, o, p, q, r, s, t, u, v, w
w = \frac{40}{3} = 13\frac{1}{3} \approx 13.333333333
Tohaina
Kua tāruatia ki te papatopenga
n=5\times \frac{2\times 3+2}{3}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
n=5\times \frac{6+2}{3}
Whakareatia te 2 ki te 3, ka 6.
n=5\times \frac{8}{3}
Tāpirihia te 6 ki te 2, ka 8.
n=\frac{40}{3}
Whakareatia te 5 ki te \frac{8}{3}, ka \frac{40}{3}.
o=\frac{40}{3}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=\frac{40}{3}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
q=\frac{40}{3}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=\frac{40}{3}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=\frac{40}{3}
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=\frac{40}{3}
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=\frac{40}{3}
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=\frac{40}{3}
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
w=\frac{40}{3}
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
m=5 n=\frac{40}{3} o=\frac{40}{3} p=\frac{40}{3} q=\frac{40}{3} r=\frac{40}{3} s=\frac{40}{3} t=\frac{40}{3} u=\frac{40}{3} v=\frac{40}{3} w=\frac{40}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}