\left. \begin{array} { l } { m = 5 }\\ { n = {(-1 \cdot 6)} }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { y = x }\\ { \text{Solve for } z \text{ where} } \\ { z = y } \end{array} \right.
Whakaoti mō m, n, o, p, q, r, s, t, u, v, w, x, y, z
z=-6
Tohaina
Kua tāruatia ki te papatopenga
n=-6
Whakaarohia te whārite tuarua. Whakareatia te -1 ki te 6, ka -6.
o=-6
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=-6
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
q=-6
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=-6
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=-6
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=-6
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=-6
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=-6
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
w=-6
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=-6
Whakaarohia te whārite (12). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=-6
Whakaarohia te whārite (13). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=-6
Whakaarohia te whārite (14). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
m=5 n=-6 o=-6 p=-6 q=-6 r=-6 s=-6 t=-6 u=-6 v=-6 w=-6 x=-6 y=-6 z=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}