\left. \begin{array} { l } { k = 1 + 5 }\\ { l = {(\frac{2}{3})} ^ {k} }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { \text{Solve for } u \text{ where} } \\ { u = t } \end{array} \right.
Whakaoti mō k, l, m, n, o, p, q, r, s, t, u
u=\frac{64}{729}\approx 0.087791495
Tohaina
Kua tāruatia ki te papatopenga
k=6
Whakaarohia te whārite tuatahi. Tāpirihia te 1 ki te 5, ka 6.
l=\left(\frac{2}{3}\right)^{6}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
l=\frac{64}{729}
Tātaihia te \frac{2}{3} mā te pū o 6, kia riro ko \frac{64}{729}.
m=\frac{64}{729}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
n=\frac{64}{729}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
o=\frac{64}{729}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=\frac{64}{729}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
q=\frac{64}{729}
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=\frac{64}{729}
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=\frac{64}{729}
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=\frac{64}{729}
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=\frac{64}{729}
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
k=6 l=\frac{64}{729} m=\frac{64}{729} n=\frac{64}{729} o=\frac{64}{729} p=\frac{64}{729} q=\frac{64}{729} r=\frac{64}{729} s=\frac{64}{729} t=\frac{64}{729} u=\frac{64}{729}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}