Tīpoka ki ngā ihirangi matua
Whakaoti mō f, x, g, h, j
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\times 5
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{5}=f
Whakawehea ngā taha e rua ki te 5.
\frac{1}{5}i=f
Whakawehea te i ki te 5, kia riro ko \frac{1}{5}i.
f=\frac{1}{5}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{5}ix=4x+5
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{1}{5}ix-4x=5
Tangohia te 4x mai i ngā taha e rua.
\left(-4+\frac{1}{5}i\right)x=5
Pahekotia te \frac{1}{5}ix me -4x, ka \left(-4+\frac{1}{5}i\right)x.
x=\frac{5}{-4+\frac{1}{5}i}
Whakawehea ngā taha e rua ki te -4+\frac{1}{5}i.
x=\frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)}
Me whakarea te taurunga me te tauraro o \frac{5}{-4+\frac{1}{5}i} ki te haumi hiato o te tauraro, -4-\frac{1}{5}i.
x=\frac{-20-i}{\frac{401}{25}}
Mahia ngā whakarea i roto o \frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)}.
x=-\frac{500}{401}-\frac{25}{401}i
Whakawehea te -20-i ki te \frac{401}{25}, kia riro ko -\frac{500}{401}-\frac{25}{401}i.
f=\frac{1}{5}i x=-\frac{500}{401}-\frac{25}{401}i g=i h=i j=i
Kua oti te pūnaha te whakatau.