\left. \begin{array} { l } { f {(x)} = 20 {(2 x ^ {3} + 3 x ^ {2} - 2 x)} }\\ { g = 8 x }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { \text{Solve for } r \text{ where} } \\ { r = q } \end{array} \right.
Whakaoti mō f, x, g, h, j, k, l, m, n, o, p, q, r
r=i
Tohaina
Kua tāruatia ki te papatopenga
h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=8x
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{8}=x
Whakawehea ngā taha e rua ki te 8.
\frac{1}{8}i=x
Whakawehea te i ki te 8, kia riro ko \frac{1}{8}i.
x=\frac{1}{8}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
f\times \left(\frac{1}{8}i\right)=20\left(2\times \left(\frac{1}{8}i\right)^{3}+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
f\times \left(\frac{1}{8}i\right)=20\left(2\times \left(-\frac{1}{512}i\right)+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
Tātaihia te \frac{1}{8}i mā te pū o 3, kia riro ko -\frac{1}{512}i.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i+3\times \left(\frac{1}{8}i\right)^{2}-2\times \left(\frac{1}{8}i\right)\right)
Whakareatia te 2 ki te -\frac{1}{512}i, ka -\frac{1}{256}i.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i+3\left(-\frac{1}{64}\right)-2\times \left(\frac{1}{8}i\right)\right)
Tātaihia te \frac{1}{8}i mā te pū o 2, kia riro ko -\frac{1}{64}.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i-\frac{3}{64}-2\times \left(\frac{1}{8}i\right)\right)
Whakareatia te 3 ki te -\frac{1}{64}, ka -\frac{3}{64}.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{1}{256}i-\frac{3}{64}-\frac{1}{4}i\right)
Whakareatia te -2 ki te \frac{1}{8}i, ka -\frac{1}{4}i.
f\times \left(\frac{1}{8}i\right)=20\left(-\frac{3}{64}-\frac{65}{256}i\right)
Mahia ngā tāpiri i roto o -\frac{1}{256}i-\frac{3}{64}-\frac{1}{4}i.
f\times \left(\frac{1}{8}i\right)=-\frac{15}{16}-\frac{325}{64}i
Whakareatia te 20 ki te -\frac{3}{64}-\frac{65}{256}i, ka -\frac{15}{16}-\frac{325}{64}i.
f=\frac{-\frac{15}{16}-\frac{325}{64}i}{\frac{1}{8}i}
Whakawehea ngā taha e rua ki te \frac{1}{8}i.
f=\frac{\frac{325}{64}-\frac{15}{16}i}{-\frac{1}{8}}
Me whakarea tahi te taurunga me te tauraro o \frac{-\frac{15}{16}-\frac{325}{64}i}{\frac{1}{8}i} ki te wae pohewa i.
f=-\frac{325}{8}+\frac{15}{2}i
Whakawehea te \frac{325}{64}-\frac{15}{16}i ki te -\frac{1}{8}, kia riro ko -\frac{325}{8}+\frac{15}{2}i.
f=-\frac{325}{8}+\frac{15}{2}i x=\frac{1}{8}i g=i h=i j=i k=i l=i m=i n=i o=i p=i q=i r=i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}