Whakaoti mō f, x, g, h
x=\frac{162}{325}+\frac{9}{325}i\approx 0.498461538+0.027692308i
f=-\frac{1}{3}i\approx -0.333333333i
g=\frac{727792}{2187}-\frac{18088}{243}i\approx 332.780978509-74.436213992i
h=i
Tohaina
Kua tāruatia ki te papatopenga
h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\left(-3\right)
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{-3}=f
Whakawehea ngā taha e rua ki te -3.
-\frac{1}{3}i=f
Whakawehea te i ki te -3, kia riro ko -\frac{1}{3}i.
f=-\frac{1}{3}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{3}ix=-6x+3
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-\frac{1}{3}ix+6x=3
Me tāpiri te 6x ki ngā taha e rua.
\left(6-\frac{1}{3}i\right)x=3
Pahekotia te -\frac{1}{3}ix me 6x, ka \left(6-\frac{1}{3}i\right)x.
x=\frac{3}{6-\frac{1}{3}i}
Whakawehea ngā taha e rua ki te 6-\frac{1}{3}i.
x=\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}
Me whakarea te taurunga me te tauraro o \frac{3}{6-\frac{1}{3}i} ki te haumi hiato o te tauraro, 6+\frac{1}{3}i.
x=\frac{18+i}{\frac{325}{9}}
Mahia ngā whakarea i roto o \frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}.
x=\frac{162}{325}+\frac{9}{325}i
Whakawehea te 18+i ki te \frac{325}{9}, kia riro ko \frac{162}{325}+\frac{9}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=3\left(\frac{162}{325}+\frac{9}{325}i\right)+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Whakareatia te 3 ki te \frac{162}{325}+\frac{9}{325}i, ka \frac{486}{325}+\frac{27}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{214}{27}-\frac{971}{729}i\right)
Tātaihia te \frac{162}{325}+\frac{9}{325}i mā te pū o -3, kia riro ko \frac{214}{27}-\frac{971}{729}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+\left(\frac{1498}{9}-\frac{6797}{243}i\right)
Whakareatia te 21 ki te \frac{214}{27}-\frac{971}{729}i, ka \frac{1498}{9}-\frac{6797}{243}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{491224}{2925}-\frac{2202464}{78975}i
Tāpirihia te \frac{486}{325}+\frac{27}{325}i ki te \frac{1498}{9}-\frac{6797}{243}i, ka \frac{491224}{2925}-\frac{2202464}{78975}i.
g=\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i}
Whakawehea ngā taha e rua ki te \frac{162}{325}+\frac{9}{325}i.
g=\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}
Me whakarea te taurunga me te tauraro o \frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i} ki te haumi hiato o te tauraro, \frac{162}{325}-\frac{9}{325}i.
g=\frac{\frac{55984}{675}-\frac{18088}{975}i}{\frac{81}{325}}
Mahia ngā whakarea i roto o \frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}.
g=\frac{727792}{2187}-\frac{18088}{243}i
Whakawehea te \frac{55984}{675}-\frac{18088}{975}i ki te \frac{81}{325}, kia riro ko \frac{727792}{2187}-\frac{18088}{243}i.
f=-\frac{1}{3}i x=\frac{162}{325}+\frac{9}{325}i g=\frac{727792}{2187}-\frac{18088}{243}i h=i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}