Whakaoti mō f, x, g, h, j, k, l, m, n
n=i
Tohaina
Kua tāruatia ki te papatopenga
h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\left(-\frac{1}{5}\right)
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-5i=f
Me whakarea ngā taha e rua ki te -5, te tau utu o -\frac{1}{5}.
f=-5i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-5ix=-4x-4
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-5ix+4x=-4
Me tāpiri te 4x ki ngā taha e rua.
\left(4-5i\right)x=-4
Pahekotia te -5ix me 4x, ka \left(4-5i\right)x.
x=\frac{-4}{4-5i}
Whakawehea ngā taha e rua ki te 4-5i.
x=\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
Me whakarea te taurunga me te tauraro o \frac{-4}{4-5i} ki te haumi hiato o te tauraro, 4+5i.
x=\frac{-16-20i}{41}
Mahia ngā whakarea i roto o \frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}.
x=-\frac{16}{41}-\frac{20}{41}i
Whakawehea te -16-20i ki te 41, kia riro ko -\frac{16}{41}-\frac{20}{41}i.
f=-5i x=-\frac{16}{41}-\frac{20}{41}i g=i h=i j=i k=i l=i m=i n=i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}