Whakaoti mō f, x, g, h, j
j=i
Tohaina
Kua tāruatia ki te papatopenga
h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\times 3
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{3}=f
Whakawehea ngā taha e rua ki te 3.
\frac{1}{3}i=f
Whakawehea te i ki te 3, kia riro ko \frac{1}{3}i.
f=\frac{1}{3}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{3}ix=x+3
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{1}{3}ix-x=3
Tangohia te x mai i ngā taha e rua.
\left(-1+\frac{1}{3}i\right)x=3
Pahekotia te \frac{1}{3}ix me -x, ka \left(-1+\frac{1}{3}i\right)x.
x=\frac{3}{-1+\frac{1}{3}i}
Whakawehea ngā taha e rua ki te -1+\frac{1}{3}i.
x=\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}
Me whakarea te taurunga me te tauraro o \frac{3}{-1+\frac{1}{3}i} ki te haumi hiato o te tauraro, -1-\frac{1}{3}i.
x=\frac{-3-i}{\frac{10}{9}}
Mahia ngā whakarea i roto o \frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}.
x=-\frac{27}{10}-\frac{9}{10}i
Whakawehea te -3-i ki te \frac{10}{9}, kia riro ko -\frac{27}{10}-\frac{9}{10}i.
f=\frac{1}{3}i x=-\frac{27}{10}-\frac{9}{10}i g=i h=i j=i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}