Tīpoka ki ngā ihirangi matua
Whakaoti mō f, x, g, h, j
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\times 3
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{3}=f
Whakawehea ngā taha e rua ki te 3.
\frac{1}{3}i=f
Whakawehea te i ki te 3, kia riro ko \frac{1}{3}i.
f=\frac{1}{3}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{3}ix=x+3
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{1}{3}ix-x=3
Tangohia te x mai i ngā taha e rua.
\left(-1+\frac{1}{3}i\right)x=3
Pahekotia te \frac{1}{3}ix me -x, ka \left(-1+\frac{1}{3}i\right)x.
x=\frac{3}{-1+\frac{1}{3}i}
Whakawehea ngā taha e rua ki te -1+\frac{1}{3}i.
x=\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}
Me whakarea te taurunga me te tauraro o \frac{3}{-1+\frac{1}{3}i} ki te haumi hiato o te tauraro, -1-\frac{1}{3}i.
x=\frac{-3-i}{\frac{10}{9}}
Mahia ngā whakarea i roto o \frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}.
x=-\frac{27}{10}-\frac{9}{10}i
Whakawehea te -3-i ki te \frac{10}{9}, kia riro ko -\frac{27}{10}-\frac{9}{10}i.
f=\frac{1}{3}i x=-\frac{27}{10}-\frac{9}{10}i g=i h=i j=i
Kua oti te pūnaha te whakatau.