\left. \begin{array} { l } { f {(t)} = \frac{3 t + 3}{5} }\\ { g = f {(5)} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { \text{Solve for } p \text{ where} } \\ { p = o } \end{array} \right.
Whakaoti mō f, t, g, h, j, k, l, m, n, o, p
p=i
Tohaina
Kua tāruatia ki te papatopenga
h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\times 5
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{5}=f
Whakawehea ngā taha e rua ki te 5.
\frac{1}{5}i=f
Whakawehea te i ki te 5, kia riro ko \frac{1}{5}i.
f=\frac{1}{5}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{5}it=\frac{3t+3}{5}
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
it=3t+3
Whakareatia ngā taha e rua o te whārite ki te 5.
it-3t=3
Tangohia te 3t mai i ngā taha e rua.
\left(-3+i\right)t=3
Pahekotia te it me -3t, ka \left(-3+i\right)t.
t=\frac{3}{-3+i}
Whakawehea ngā taha e rua ki te -3+i.
t=\frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
Me whakarea te taurunga me te tauraro o \frac{3}{-3+i} ki te haumi hiato o te tauraro, -3-i.
t=\frac{-9-3i}{10}
Mahia ngā whakarea i roto o \frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}.
t=-\frac{9}{10}-\frac{3}{10}i
Whakawehea te -9-3i ki te 10, kia riro ko -\frac{9}{10}-\frac{3}{10}i.
f=\frac{1}{5}i t=-\frac{9}{10}-\frac{3}{10}i g=i h=i j=i k=i l=i m=i n=i o=i p=i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}